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What is ICA?

Before the actual explanation of all the aspects and algorithms of Indendent Component
Analysis (ICA), it would be nice to outline what is all about.

Thus, what ICA actually is? The first intuition which comes to mind is that it is somehow
connected with wide-used linear transformation method Principle Component Analysis. Of course,
the analysis of components makes these two methods be ralated to the same sphere. However, ICA
is comparatively recently developed technique. The main purpose of it is finding of linear
representation of non-Gaussian data and in such a way which makes component statistically
independent from each other. Or, at least, the independence of these components is maximal. In
other words, ICA helps extracting latent factors which lie in a datasets of random variables,
measurements or signals. Often these datasets are called mixtures.

Formally ICA of given matrix 4 of a size nxm can be defined as follows:

A=CF (1)

With:

C-nxmand F - m>xm

The rows of matrix F characterize m independent components of original matrix A; and
matrix C with observed attributes of dataset [1].

ICA is very sound technique which is useful in separating distinct sources of several linearly
mixed signals. On Fig.1 cartoon example depicts the global concept of ICA.

Original Sources Mixtures Extracted Sources

MU nf\ va /\\\4 /<1 ‘“\"‘\M”llﬂ\f\f‘!‘
INAREATR
>< ICA

VAN

|\ H u MM’ i Ju\_/L

Fig. 1. ICA principle [14]

For example, in a record of electroencephalograms ICA is able to split artifacts which
interfere the data, because they are usually independent. Another vivid example which describes
usage of ICA is that the independence of the consequent hidden factors is useful, for example, in
segregating mixtures of multiple sources. The simplest intuitive understanding of ICA implies that
we require 7 different non-Gaussian sources to get positive outcomes.

Similarities and differences with studied methods

ICA has a lot in common with already discussed method during lectures — SVD. However,
there are several meaningful differences between them.

Firstly, the factors which are picked up by SVD are uncorrelated. But, as it was already
mentioned, in ICA components are meant to be statistically independent. Secondly, ICA does not
provide the reduction of the size of dimensionality for dataset. More to say, if one chooses one
scalar and multiply a row of F with it; and after this divide by it a corresponding column of C —
decomposition still holds. Thus, the ambiguity can be observed. Finally, the permutation of rows in
F matrix will not cause any troubles, if the columns of C are permutated reciprocally [1].

When talking about assumptions which are taken as a basis in ICA, firstly, it is worth
mentioning the main one — independence of attributes.



Two variables x; and X, are considered to be independent iff their collective probability
density function (PDF) is a product of two marginal pdfs [2].

So why do we actually focus on this assumption? The answer is quite simple. When one
performs decomposition of matrix 4 into two matrices (C and F) in such a way that their product
would give as close result as possible to original A, the assumption of independence is sufficient. In
[1] the author provided a convincing proof. This concept delivers some ambiguity. On the one hand,
the processes which are considered independent in reality should also perform mathematical
independence when studying them. Thus, ICA will definitely be applicable and will perform
prolific results.

On the other hand, it is intuitively understood that there some situations which at the first
glance do not have any correlation amongst them but when statistically analyzing them, they can
show some degree of dependency and connection of the components. That is why, statistical
independence requires consideration for each particular data set.

One more essential assumption is Non-Gaussianity. This aspect should be underlined as well,
since, with Gaussian variables initial independence of components cannot be reached. Thus, there
should be at most one Gaussian distribution in independent attributes, because higher-order
cumulants are zero for Gaussians and this violates independence principle. And this assumption can
be considered as a weakness of ICA. Since, if it does not hold the method will not give meaningful
result. More details about Non-Gaussian requirments can be looked up in [3] and [4].

Morover, one more assumption will be mentioned here. It is simplified that unknown mixing
matrix has equal number of rows and columns and it is invertible (i.e. the number of the
independent sources in matrix C is equal to the number of mixtures.). An ICA has also an
assumption in it of zero mean data (as well as SVD). Make the observed signals zero mean and
decorrelation of them remove the second-order dependencies between components and boosts
independency.

Interpretation of the results

Usually, the Gaussian—shaped distributions are very comfortable to work with. Nevertheless,
there are numerous domains which do not sustain such a distribution type. Thus, ICA is a useful
tool for working with them. The main application sphere of ICA is signal processing, where
distinction of different sound sources from noise is crucial. More to say, such areas as finances and
biomedical sensing can benefit from ICA as well, because these spheres are quite similar. Firstly, it
is relatively understood how many components should be in the data (i.e. we know what to expect
from result and, thus, can assess the quality of it). Secondly, the noise is clear to be understood.

The factor interpretation of ICA results is clear enough. Matrix A contains rows which
correspond to 7 signals recorded by each microphone within 7 time intervals. The rows if F matrix
are the factors (separate voice lines within time span) mixed be elements of matrix C, which shows
that the microphones recorded overlapped signals.

Two resulting matrices / and C can be interpret geometrically as well. So, the rows of matrix
C represent coordinates in geometric space. Depiction of column from this matrix helps to visualize
the structure of the data. Nevertheless, since the rows of F matrix are not axes (no ortogonality)
metric cannot be applied blindfold in particular geometric space. Thus, two axes which can be
erroneously considered as orthogonal in reality can be same way directed. This leads to
misinterpreting of data and mistaken outcomes. Namely, if the luster is found, it is expected that it
will be plot along an axes and every such a cluster would represent one independent component.
Hence, ICA visualization will be looking better than SVD, only because of the fact that rows of F
do not stand for axes and not orthogonal. [1]

Despite the fact that component interpretation of the results is not used with ICA, it is
possible to determine the contribution of each independent to the initial data. Hence, as it was
already mentioned, rows of matrix F represent one of the processes which is difused with original
data

To discover the effect of ith process on entries of A matrix, it is sufficient to multiply ith
column of matrix C and the corresponding row from matrix F.



Algorithm of ICA

Before applying ICA to any dataset it is useful to conduct preprocessing of the data. In
general, there two essential steps covered in the literature. They are centering (preprocessing is to
center A, i.e. subtract its mean vector, to make A a zero-mean variable) and whitening of the
observed variables (transformation the observed vector /inearly to get a white vector which, i.e. its
components are uncorrelated and their variances equal unity). It can be implemented with a help of
eigen-value decomposition (EVD). The author in [5] claimes that “...whitening solves half of the
problem of ICA. Because whitening is a very simple and standard procedure, much simpler than
any ICA algorithms, it is a good idea to reduce the complexity of the problem this way”.

Moreover, before implementation of ICA it is very useful to perform reduction of
dimensionality of the data. Only a few concealed components in the high-dimensional given data
will give the best result. Thus, the data should be compressed before processing. Intact original
high-dimensional data set might result in moderate results. This can be as a consequence of noise,
which can be presented in several initial dimensions.

The main challenge when conducting dimension reduction is to lower the number of
redundant dimentions without flatteneing the data structure, since the data, we are interested in, is
usually projected to a lower dimensional space.

All existing algorithms of ICA can be separated in 4 groups (depending on techniques which
they stand for):

1. maximization of non-Gaussianity of the components

2. minimization of mutual information

3. maximum likelihood estimation

4. tensorial methods

Three the most popular algorithms of ICA can be mentioned

e FastICA

¢ JADE (joint approximate diagonalization of eigenmatrices)

o Infomax

Conclusions

Independent component analysis is quite interesting method for discovering latent
information from big data sets. It is a nice tool to be used in Data Mining. ICA methods are very
successful and the most widely-used ones in blind source separation.

Despite some limitations which it has (can only separate linearly mixed sources and
disability to work with Gaussian-distributed variable) with brainy use very often it gives impressive
results.
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MOJIEJIb IOTOKY JAHUX AHAJII3Y BIJHOCHOI KOHIEHTPAL{

X.B. Jlin’ swina, acmipaHT
TepHONIIbCHKUI HALlIOHATBHUI €KOHOMIYHHI YHIBEPCUTET

Pyx no iHpoOpMamiiHOrO CycHibCTBa CYNPOBOIKYETHCS HIMPOKMM PO3HOBCIOJDKEHHSAM
PO3MOIIICHUX 1HPOPMALIHHNX CHCTEM, SIKi CTAalOTh OCHOBHHM JDKEpPEJIOM OTPHMAaHHsS 3HaHb Ta
inpopmauii. Posnoxinena inopmauiiina cucrema — 1e Hallp HE3alIeKHUX BY3iB (KOMIT IOTEPIB),
CIIOJyYeHUX amapaTHO 1 B3aEMOAIFOYMX Yy paMKaX TIeBHOI KOHIEMNIii, SKHH if KiHIEBHX
KOPUCTYBa4iB BHITISIAE€ K €MHA IIEHTpaji3oBaHa cucrema. [loTik maHmx — me 3acid mepenaui
CKIHYEHHOi a00 B I'DaHHYHOMY BHIIaJKy, HECKIHUCHHOI KUIBKOCTI BIOPSIKOBAHUX ITAaHHX MIiX
KOMIIOHEHTaMH 00UYHCIIIOBAIBLHOI MOZETI.

KoHueHTpanist BUpOOHUITBA J]a€ MOXIIMBICTH MOPIBHATH POJIb BEIHKUX TOCIOIAPIOIOYUX
cy0’ekTiB (IPOAaBLiB) y BHPOOHMITBI KOHKPETHUX TOBapiB a0 HajaHHI MOcTyr. BumiproBaHHS
KOHIIEHTpalii BUPOOHMITBA 3[IfCHIOEThCS B Taiy3i 3a HACTiJKaMH CTATHCTUYHUX HArJLIIB 3a
MiAIPHEMCTBAMH 32 TAKUMH IOKAa3HHKAMU, SIK 00CST BHPOOICHOI MpoayKii y BapTICHOMY BHUpasi,
YHCENBHICTh 3aiHsITHX, (QOHI 3apruiaT, NpuOyTOK. 3a3HaYeHI CKOHOMIUHI XapaKTEPHCTHKH IO
KOXXHOMY 3 MiIIPUEMCTB Tramy3i 3ICTABISIOTHCS 3 Taly3eBHUMU IOKa3HUKAMH, MICISI YOTO
PO3PaxOBY€ETHCS YACTKA KOXKHOTO MIANPUEMCTBA B CYKYITHOMY Ially3¢BOMY ITOKa3HHKY.

BumiproBaHHS PUHKOBOI KOHIIEHTpAIIii MIPHUITyCcKae TOCHiUKeHHS chepr ToBapHOro 00iry —
ONnTOBOro abo po3ApiOHOro puHKY. 30Ir MOKA3HUKIB KOHLUEHTpAlil BUPOOHHUIITBA I KOHLIEHTpPALIT
pHHKY Oyze TUM OLIBIINM, YMM BHUIII TPAHCIIOPTHI BUTPATH, [0 0OMEXKYIOTh HEPEMIIICHHS TOBAPY
B IIPOCTOPI; YMM OLIbII OAHOPIAHUI TOBAP; YUM OiIbIIIE MTOEAHYIOThCS chepa BUpOOHULTBA i cdhepa
06iry. Konu #inersest mpo KOHIEHTpALilo BUPOOHHITBA B MacIITabi HaliOHAIEHOT €KOHOMIKH, TO
BUKOPUCTOBYETBCS TEPMiH «CYKYITHA KOHI[CHTPALLisD).

KoediuienT BinHOCHOI KOHIIEHTpAllii PO3paxoBYeThCs K BiIHOIICHHS 4acTOK HAWOLIBIINX
MIANPUEMCTB PUHKY B 3arajibHiii CyMmi HIANPUEMCTB 0 4acCTKaM MPOMYKLii LUX MiJNPHEMCTB y
3araJbHOMY 00Cs31 MPOMYKIIii, IO BUITYCKA€ThCS:

ne K - koedilieHT BiTHOCHOT KOHIICHTpaIlii;
£ - yacTKa HAHOUTBIINX MiANPHEMCTB PHHKY B 3araibHii CyMi MANPUEMCTB, Y BiICOTKAX;

@ - 9acTKa MPOIYKII{ IINX MiANPHEMCTB Y 3aralbHOMY 00CS31 IPOAYKIii, y BiICOTKaXx.

JlaHuil MOKa3HUK BUMIPIOETCS B a0COMIOTHHX 3HAYEHHAX. YnM Onrpkde koedimieHT 10 Hys,
THM OLIBII BUCOKA CTYIiHb KOHIEHTpALl CIIOCTePIiraeThcs Ha PUHKY. JIErko MepeKoHaTHCS B TOMY,
110 B pa3i pUHKY JOCKOHAIOI KOHKYPEHIIiT, KOJIH BCI MiANPUEMCTBA MAIOTh OJHAKOBI 1 PIBHI YaCTKH,
iHgekc nopiBHioe omuHuii. JlaHuil iHZEKC BOJIOAIE ICTOTHHMH II€peBaraMu, LIO BHIiIHO
BiZIPI3HAIOTH HOr0 BiJl MOIEPEIHBOTO iHAEKCY, TaK SIK BPAXOBYIOTHCS HE TUIBKUM PUHKOBI YaCTKU
HAWOUTBIINX MiAMPUEMCTB, ajle i YUCIIO MiANPHEMCTB, IO MPALIOIOTh HA PHHKY. Y TOU XKe 4ac 10
LUX MHip HEBHPINICHOIO 3aIMIIAETHCS MpodiieMa BH3HAYCHHS YHCIAa HAHOUIBIINX MiIPUEMCTB, 10
BKJIIOYAIOTBCS B el ingekc. Lle Moxke OyTu i Tpu HiANPUEMCTBA, 1 IeCATH MiANPUEMCTB, 1 OJHE
mignpueMcTBo. OueBHIHO, IO B KOXHOMY KOHKPETHOMY BHIIAJIKy IOTPIOHO caMocCTiiiHe
BU3HAYCHHS 1bOTO 3HAYCHHS, 10 YCKJIAJHIOE NMPAKTHYHE BUKOPUCTAHHS KoedilieHTa BiZHOCHOT
KoHIeHTpauii. J[o Toro x, Mye CKIaaHO JATH TIyMauyeHHs KOHKPETHHM 3HAa4YeHHSIM KoeQilieHTa,



