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FOREWORD 

 

Analysis of the current state and prospects of the information technology 

industry shows that active research has state priorities in countries with the most 

developed economies. The implementation of their results changes the world 

development trends in the direction of significantly expanding the capabilities of 

a wide range of industries: chemistry, pharmaceuticals, pharmacology, 

construction, aviation, aeronautics and astronautics, energy, defense, transport 

and more.In studies of technical, technological, economic directions often have 

to build and analyze mathematical models of real phenomena and processes. 

Scientific problems of light industry are not an exceptions here. 

In studies of technical, technological, economic directions often have to 

build and analyze mathematical models of real phenomena and processes. 

Scientific problems of light industry are not an exceptions here. 

The  purpose  of  mathematical  modeling  can  be  different.  Often this 

purpose  is the  prediction  (forecasting)  behavior of certain characteristics of 

the objects.  Types  of  mathematical models used are very different. 

Of great importance are mathematical models in the form of differential 

equations, which are one of the main instruments of study a variety of 

phenomena and processes. 

Linear algebraic equations does not necessarily serve as a means of 

approximating. In many situations, they provide a direct description of the 

phenomenon. These  are, in particular, the situation are reduced to a certain 

number of relations "balance" type. Examples of  this may be the problem of 

balancing economic sectors, resource allocation (of different nature),  some  

electrical      circuits etc. 

In mathematical modeling of the phenomenon often have to deal 

nonlinear equations (algebraic or transcendental) or systems, and researchers 

need to have available methods for solving such relationship. 
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By  the  very  specific  problems  of  mathematical  modeling  in  light   

industry  refers  selection  of  mathematical  expressions to describe the various 

curves and surfaces. These curves can be, for example, outlines the real parts of 

articles of clothing or footwear, and surface - spatial fragments of such          

products. 

A number of important industrial and economic problems (not just light 

industry) naturally united not so much the content as methods for their solution. 

The goal of teaching monography is to study the application of 

mathematical  methods  for  solving  complex  problems using  modern  

computers. 
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PART 1. NUMERICAL METHODS AND THEIR 

PROGRAMMING 

1. Algebra of matrices. Calculating of determinants. Actions 

with matrices 

Key provisions 

 System of  m*n numbers (real and complex), placed in a rectangular table 

with m lines and n columns 

                                       























nmmm

n

n

aaaa

aaaa

aaaa

A

...

....................

...

...

321

2232221

1131211

,                                     (1.1) 

is called the matrix (numerical). 

 The numbers )...,,2,1;...,,2,1( njmiaij  , that make up this matrix, are 

called its elements. The first index i  means  line number of the element, and the 

second j ─ column  number of it .  

 For matrix (1.1) is often used abbreviated representation 

   
ij

aA           )...,,2,1;...,,2,1( njmi    або  
nmijaA

,
 , 

and they say that the matrix A is of type nm .  

 If nm  , then matrix A is called square matrix of order n. If nm  , then 

matrix is called rectangular. In particular, the matrix of type n1  is called 

vector-line and matrix of type 1m  ─ vector-column. Number (scalar) can be 

viewed as a matrix of type 11 .  Square matrix 

                                 





















n
a

a

a

A

...000

............

0...00

0...00

2

1

                                          (1.2) 

is called diagonal matrix. 
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 If the )...,,2,1(1 nia
ij

 , then matrix (1.2) is called the identity matrix 

and is denoted by the letter Е, i.e.  

                         





















1...000

.............

0...010

0...001

E . 

 By entering Kronecker  character  

            









,,1

;,0

jiякщо

jiякщо
ij

  

we can write:   
ij

E  . 

 Matrix, all elements of which are zero, called zero-matrix and is denoted 

by 0. To mark number of rows and columns of zero-matrix, they use 

designation: mn0 . 

 For the square matrix  
nnij

aA
,

  there is the determinant                                            

                   

nnnn

n

n

aaa

aaa

aaa

A

...

...

...

det

21

22221

11211

 . 

 We should not equate these two concepts: the matrix is an ordered system 

of numbers recorded in the form of a rectangular table, and its determinant is a 

number which can be defined by  certain rules: 

                                
)...,(

21

21

21
...)1(det

n

n

aaa
naaa

x aaaA                                (1.3) 

where the sum (1.3) includes all  possible permutations )...,( ,21 n  of elements 

n...,,2,1   and contains n! of summand, and 0 , if an even permutation, and 

1 , if an odd permutation. 

Actions with matrices 

 The equality of matrices 
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 Two matrices  
ij

aA   and  
ij

bB   are considered as equal: BA  , if 

they are of the same type, i. e. They have the same number of rows and columns, 

and their   respective elements are equal, i.e. 
ijij

ba  .                      

                             The sum of matrices 

    The sum of two matrices  
ij

aA   and  
ij

bB  of the same type is a matrix 

 
ij

cC   of the same type, the  elements of which 
ij

c  are equal to the sums of 

corresponding elements 
ij

a  and 
ij

b  of those matrices A  and B , i.e. 
ijijij

bac  . 

So, 

          



























mnmnmmmm

nn

nn

bababa

bababa

bababa

BA









2211

2222222121

1112121111

 

 From the determination of the sum of two  matrices immediately follows 

its properties: 

1) CBACBA  )()( ; 

2) ABBA  ; 

3) AA  0 . 

Similarly the difference of matrices is determinated : 

                     



























mnmnmmmm

nn

nn

bababa

bababa

bababa

BA









2211

2222222121

1112121111

. 

 

                                   Multiply matrix by the number 

 The product of matrix  
ij

aA    by the number   (or the product of the 

number by  matrix) is  matrix, the elements of which   are obtained by 

multiplying all elements of the matrix A   by that  number , so 
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



















mnmm

n

n

aaa

aaa

aaa

AA

















21

22221

11211

. 

From the determination of the product of the  matrix by the number immediately 

follows its properties: 

1) AA 1 ; 

2) 00 A ; 

3) AA )()(   ; 

4) AAA   )( ; 

5) BABA   )(  

(here A  and B  – are matrices;  and  – are numbers). 

Note, that if the matrix A  - is a square order n, then  

AA n detdet   . 

Мatrix AA )1(   is called opposite. Not difficult to see that if the matrix A 

and В are of the same types, then )( BABA  . 

 Multiply matrices 

Let 





















mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

   і   





















mnmm

n

n

bbb

bbb

bbb

B









21

22221

11211

 

-matrices of types nm  and qp  correspondingly. If the number of columns 

of the matrix A equals the number of rows of the matrix B, i.e.   

                         pn  ,                       

then for these matrices is defined matrix C  of type qm , called their product: 
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



















mqmm

q

q

ccc

ccc

ccc

C









21

22221

11211

, 

where   ),,2,1;,,2,1(
2211

qjmibababac
njinjijiij

  . 

 From the determination of the product of two  matrices  immediately 

follows the rule to multiply matrices: to receive an element which  is in i-th line 

and j-th column of the product of two matrices, it is necessary  to multiply 

elements of i-th row of the first matrix  by the respective elements of j-th 

column of the second matrix and then to add obtained products. 

  The product AB has sense if and only if the matrix A has so many rows , 

how many  columns has matrix B. In particular, it is possible to multiply square 

matrices only of the same order. 

 In cases when AB=BA,  matrices A and B are called rearrangement 

(commutative). For example, it is easy to see that identity matrix E 

rearrangement with any square matrix A of the same order, and 

         AEAAE   

 Thus, the identity matrix E plays a role of  "one"  in  multiplication. 

 If A and B – are square matrices of the same order, then 

     BABAAB detdet)det()det(  . 

 For example, for such matrices we have: 

      
87

65

43

21

5043

2219
  

     and 

     
87

65

43

21

4631

3423
 . 
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 Transposed matrix 

If we change in matrix 

                                     


















mnmm

n

n

aaa

aaa

aaa

A

...

...

...

21

22221

11211

 

of the type nm  the rows with  corresponding colomns, we obtain so called    

transposed matrix: 

                               


















mnmm

n

n

T

aaa

aaa

aaa

AA

...

...

...

21

22221

11211

, 

of the type nm . In particular, for vector-line  naaaa ...21  the 

transposed matrix is vector-column  

                                                           





















na

a

a

a

2

1

. 

Transposed matrix has such properties: 

1) the twice transposed matrix is the original one: 

                 ;)''(" AAA   

2) the transposed matrix of sum is equal to sum of   transposed matrices: 

                ;'')'( BABA   

3) The transposed matrix of the  product is equal to product  of   transposed 

matrices: 

                 ;'')'( ABAB   

Really, the element of і-th row and j-th colomn of matrix )'(AB  is equal to the 

element of  j-th row and  і-th colomn of matrix AB , i.e.: 

                ....2211 nijnijij bababa   
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The last expression is obviously the sum of the products of elements of i-th line 

of matrix 'B  and  respective elements of j-th column of the matrix 'A , that is 

equal to the general element of  matrix '' AB . 

If matrix  A  – is square, then obviously  

                                                                   .det'det AA   

Matrix ][ ijaA   is called symmetric, if it matches with its transposed, i.e. if: 

                                                                        .' AA                         (1.4) 

From equation (1.4) follows that: 1) symmetric matrix – is square )( nm   and 2) 

its elements,  which  are  symmetric  relatively  main  diagonal, are equal  to 

each other, i.e. 

 .ijji aa   

The product ,'AAC   is obviously a symmetric matrix, so how 

                                        .'')''()''(' CAAAAAAC   

 The inverse matrix 

 Definition 1.  Inverse matrix in relation to this matrix is a matrix, which is 

being multiplied   right and left side with this matrix gives the identity matrix. 

          For matrix A  let's denote 1A  - inverse matrix. Then according to the 

definitioin we have: 

                                                  ,11 EAAAA  
                                (1.5) 

where E  – identity matrix. 

 Finding the inverse matrix to this is called  inversion of the matrix. 

  A square matrix is called nonsingular if its determinant is different from 

zero. 

Otherwise matrix called special or singular. 

 Every nonsingular matrix has an inverse matrix. 

 Let's we have nonsingular  matrix of n-th order 
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       ,

...

............

...

...

21

22221

11211





















nnnn

n

n

aaa

aaa

aaa

A  

where 0det A . 

 Let's construct  for it  so-called  adjoint  matrix 

      ,

...

............

...

...

~

21

22212

12111





















nnnn

n

n

AAA

AAA

AAA

A      

where ijA  – algebraic additions (minors with signs) of the respective elements 

),...,2,1,( njiaIJ  . 

Note  that the algebraic additions of elements of rows are plaved in 

corresponding columns, so it  is an operation of transposition. 

Let's divide all elements of the last matrix on the  value of  determinant of 

the matrix A , i.e. on  : 

    

































nnnn

n

n

AAA

AAA

AAA

A

...

.........

...

...

21

22212

12111

* .       

Notes 1. For a given matrix A its inverse matrix А 1  is only. 

 Notes 2. Special square matrix has not the inverse. 

    Some basic properties of the inverse matrix: 

 The determinant of  inverse matrix is equal to the reciprocal of the 

determinant of the original matrix.      

        Indeed, let 

    .1   

   Given that the determinant of the  product of two square matrices is the 

product of determinants of matrices, we get: 
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      .1detdetdet 1   

       So,  

      




det

1
det 1

. 

  

 The inverse matrix of product of square matrices is the product of the 

inverse matrices of  multipliers, taken in reverse order, i.e. 

       111 
  

    Indeed,  

          111111  

    and 

           111111  

    So, 11    is inverse matrix to . 

     In more general 

       ....... 1

1

1

1

11

21






 ррр  

  The transpose inverse matrix is  equal to the  inverse transpose  matrix: 

        .
11  


  

 Indeed, if    transposed   the main matrix equality 1 , we get:        

    .11 





   

     Hence, multiplying last equality on the left  on matrix   1
 , will have:    

      



 111  

      or 

    11  


 , 

    as was required to proof. 

 Note. The  matrix equations are easily solved With the help of  inverse 

matrices.  

     Equations   and  . 
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     Indeed, if 0det  , then   1  and 1 . 

 Degree matrix 

 Let  A  - square matrix. If  p  - integer, the considered  

    р

разр




 ... . 

 Additionally set, that 0 , where   - is identity matrix. If A is 

nonsingular  matrix, you can introduce the concept of a negative degree, 

defining it by relation: 

        рр 1   

 For degrees of the matrices with integer exponent are valid ordinary rules: 

      1) qpqр  ; 

      2)   pqqp  . 

     Non-square matrix, as is known,  not to  be present degree. 

Norm of the matrix 

 Inequality  BA  between matrices    ijaA    and    ijbB    of the same 

types means, that  

                             ijij ba                            

           Absolute value (modulus) of the matrix  ijaA    we will understand 

matrix 

                             ijaA   

    where  ija  - are the modulus of elements of matrix А. 

           If А and В – are matrices,  for which the operations А+В and АВ have 

sense, then: 

AAв

BAABb

BABAa

 





)

;)

;)

 

(α – is number) 

            In particular, we have 
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pp AA       

        (р – integer) . 

         The norm of the matrix ijaA   means the real number A , which have 

such properties: 

BAABг

BABAв

ААparticularinnumberAAб

АiffAAa









)

)

,__),()

00,0)



 

 (А and В – are matrices,  for which the appropriate operations have sense). In 

particular, for square matrix we have:  

                                ,
pp AA   

where р – integer. 

 Let's note another important inequality between the norms of matrices А 

and В  of the same type. Using condition c), we have: 

                       ABAABAB  )(  

   From here                

                      .ABABBA   

        Similarly, 

                     .BABA   

       So,         .ABBA   

     

     Thereafter, for the matrix  ijaA   of arbitrary type we will consider three 

main   easyly calculated   norms: 
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).()3

);(max)2

);(max)1

2

,

normkaA

normlaA

normmaA

ji

ijk

i

ij
jl

j

ij
jm













   

 Rank of the matrix 

 We have a rectangular matrix 

 





















mnmm

n

n

aaa

aaa

aaa

A

...

....................

...

...

21

22221

11211

 

If in this matrix randomly select  k  rows and  k  columns,  where    

k≤min(m, n), the elements that are at the intersection of this rows and columns, 

are forming a square matrix of order k. The determinant of  this  matrix is called 

the minor of  k-th  order matrix A. 

    Definition. The maximum order of minor of matrix ,  different from 

zero, is called the rank of matrix.  

   In other words, the matrix A  has rank r, if: 

1) There is at least one minor of order r  that is different from zero; 

2) all the minors of matrix A of order r + 1 and higher are equal to zero. 

 Rank of the zero matrix, i.e. matrix consisting of zeros, is zero. The 

difference between the smallest of the numbers m and n and rank is called the 

defect of the matrix. 

 Elementary transformation matrices 

 The following transformation matrices are called elementary: 

1) permutation of two rows or columns; 

2) multiplication of all the elements of any row (column) on the same 

number different from zero; 
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3) adding to the elements of a row (column)  the elements of the other row 

(column) multiplied by the same number. 

   Two matrices are called equivalent, if one can be obtained  from another 

through a finite number of elementary transformations. These matrices are not, 

in general, equal, but  have the same rank. 

    Easy to ensure, that each elementary transformation of a square matrix A 

is equivalent to multiplication last for some nonsingular matrix. However, if the 

conversion is done on lines (columns) matrix A, the multiplier should be left 

(right) and represent the result of the related elementary transformation to the 

identity matrix. 

 For example, moving the matrix 

    



















333231

232221

131211

aaa

aaa

aaa

A  

    second and third lines, we obtain the equivalent  matrix: 

   



















232221

333231

131211
~

aaa

aaa

aaa

A . 

   The same matrix A
~

  can be obtained, if in identity matrix  

    



















100

010

001

E  

rearranged  second and   third lines  

       



















010

100

001
~
E  

   and the resulting matrix multiply by the left side on the matrix А, i.e. AEA
~~

 . 

   Similar way are performed other elementary transformation. 

  Note that if in the equation EAA 1  we perform the same transformation 

of  rows of matrices  A  and  E  as long as the A is not converted into a identity  
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matrix, we will have EAAE
~~ 1 , where E

~
 - – transformed the identity  matrix. 

Hence, i.e.  EAE 
~

, we have  EA
~1 , i.e. the inverse matrix А

-1
 is the converted 

identity matrix. There is the method of calculation of inverse matrix is  based on 

this idea of converting lines. 

Calculation of determinants 

 Elementary transformation matrices provide the most convenient method 

of calculating the determinant of this matrix. Suppose, for example,                                                           

   





















nnnn

n

n

n

aaa

aaa

aaa

...

............

...

...

21

22221

11211

.                     

 Assuming that a11 0 , we have: 

      

























nnn

n

n

n

n

aa
a

a

aa
a

a

aa

a

...

............

...

...1

2

11

1

)1(

2

)1(

22

11

21

112

11  

   Hence, subtracting from the elements  аij, which belong to the  j-th column 

(j>=2)  the relevant elements of the first column multiplied by  а1j, we get:                               

 111

)1()1(

2

11

1

)1(

2

)1(

22

11

21

11

...

............

...

0...01

























 n

nnn
n

n

n a

aa
a

a

aa
a

a

a  

 

where 

                



















 

)1()1(

3

)1(

2

)1(

3

)1(

33

)1(

32

)1(

2

)1(

23

)1(

22

1

...

............

...

...

nnnn

n

n

n

aaa

aaa

aaa
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  and    )....,3,2,(
11

11)1( nji
a

aa
aa

ji

ijij     

     Apply to the determinant 1n  the same way. If all the elements         

         ),,...,2,1(0)1( nia i

ii   

  then finally obtain: 

                             )1()1(

2211 ...  n

nnn aaa                                 

        If in any determinant 
kn  the upper left element 0)(

1,1 

k

kka , we have to 

rearrange the rows or columns of the determinant  kn , that needed element was 

different from zero (it is always possible if the determinant 0 ).  Of course, 

you will need to consider changing the sign of the determinant  kn .  

 It's possible to give more general rule. Let determinant  ]det[
~

ijn a  

is changed so, that 1 pq
 ( pq

 – the main element), i.e. 

 

 

 

Then            

 
~~

1
)1(

n

qp

n
 , 

 

where   

~
1n

det[
)1(

ij
] – is the determinant of the (n - 1)-th order, which we 

obtain from  n
 by  deleting  p-th row and q-th colomn,  followed by 

conversion elements by the formula:  

                                                 pjiqijij


)1(
 

nnnjnqn

pnpjp

inijiqi

njq

n

aaaa

aaa

aaaa

aaaa

.........

..........................................

......1...

..........................................

.........

..........................................

.........

~

1

1

1

11111


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i.e., each element 
)1(

ij
 of the determinant  

~
1n
 equal to the corresponding 

element  ij
 of determinant of the matrix  

~
n
, reduced by the product of its 

"projections"  iq
  and   pj

  

on the erased  column and row of the original determinant. Confirmation of this 

statement easily follows from the general properties of determinants. 

 Software that implements the described algorithm has been developed [26, 

29, 32]. The text of the main program procedures is given in the appendix 1.

  

 

2. Systems of linear equations (SLE),  

their solution by Kramer formulas,  

the method of inverse matrix,  Gauss method 

General concepts and definitions 

        When conducting research of mechanical systems often have to face the 

necessity of solving systems of linear equations. 

         In general, the system of linear equations can be represented as follows: 

                                       



















mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

........................................

,...

,...

2211

22222121

11212111

                          (2.1) 

where )...,,2,1;...,,2,1( njmia
ij

  — coefficients of the unknowns; 

           )...,,2,1( nix
i

  — unknowns;  

           )...,,2,1( mib
i

  —  constants;  

           n  — the number of unknowns in the system;  

          m  — number of equations. 
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   The system of equations (2.1) conveniently presented in vector form     

                                bAx                                                   (2.2) 

where А — matrix of матриця coefficients )...,,2,1;...,,2,1( njmia
ij

 ;   

          x = (x1,…xn) — sought-for n - component vector;  

         b = (b1,…,bm)  — given m  -  component vector (vector right parts). 

 Tasks, that are reduced to solving systems of linear equations, generally 

are mostly statically defined (number of unknowns equals the number of 

possible equations, i.e. m = n). In this case, a system of linear equations (2.1) 

can be represented as follows (coefficient matrix A is square): 

                                        



















nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

........................................

,...

,...

2211

22222121

11212111

                               (2.3) 

 For the square matrix  
nnij

aA
,

  there is the determinant det A. 

 Determinant is a number which can be defined by  certain rules: 

   
)...,(

21

21

21
...)1(det

n

n

aaa
naaa

x aaaA                                                                

where the sum (3) includes all  possible permutations )...,( ,21 n  of elements 

n...,,2,1   and contains n! of summand, and 0 , if an even permutation, and 

1 , if an odd permutation. 

The determinant of the coefficient matrix A can be denoted  by one of the 

following methods:  

                            

nnnn

n

n

n

aaa

aaa

aaa

A

...

............

...

...

det

21

22221

11211

                                   (2.4) 

If 0det A  the matrix A is called nondegenerate. If the system of 

equations (2.3) has a solution, it is called compatible. Otherwise it will be called 

imcompatible or contradictory.  
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If the right parts  vector b is 0, the system (2.3) is called homogeneous. 

Homogeneous system of equations always compatible. It has non-zero solutions 

when 0det A .  

If  the system (2.3) has the only solution they say that the system of 

equations is defined. If there are two or more solutions of the system it is called 

uncertain.  

The case when the determinant 0det A  provides for the only solution. 

 

Methods for solving systems of linear equations  

 Formulas of Kramer 

The exact solution of system (2.3) in explicit form can be obtained using 

formulas Kramer. The method consists in sequential dividing of  the transformed 

determinant (in which  the coefficients of  the corresponding column of the 

system are replaced by column  nbbb ,..., 21 ) by the initial determinant composed 

of elements of left side of equations (2.3). Thus, the  vector of  solutions of 

system 





























nx

x

x

x

.

.

.

2

1

 can be defined as follows:  

                                     
































































nnx

x

x

x

.

.

.1

.

.

.

2

1

2

1

,                                           (2.5) 
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where 

nninninn

nii

nii

j

n

i
jii

aabaa

aabaa

aabaa

bA

......

..................................

......

......

1,1,1

21,221,221

11,111,111

1









  — are the determinants, 

obtained  from the determinant Δ by replacing of its i-th column by column of 

right parts of the system (2.3). 

          From equality (2.5) we obtain the formulas of Kramer                                                                                      














 n

n
xxx ,...,, 2

2

1

1
                                                                      (2.6)         

Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 2. 

Gauss method 

The method of successive elimination of variables  (Gauss method) is 

based on the consistent lowering order of the system (2.3) by eliminating the 

unknowns 121
,...,

n
xxx  in linear equations This results in obtaining of a 

triangular coefficients matrix )...,,2,1;...,,2,1( njmiaij  . This sequence of 

procedures is   the direct way  exceptions variables. For its implementation must 

consistently subtract from the first equation the other equations, multyplying 

their left and right parts on the constant ratio, which is  a share of the division of 

constant coefficients 
iijiij

aam / , where niijni ...,,2,1;1...,,2,1  . The 

final system of equations on a direct way looks: 

                  



























)1()1(

)1()1(

1

)1(

)1(

2

)1(

2

)1(

22

)1(

22

111212111

......................................

...

......................................

......

......

n

nn

n

nn

k

nn

k

kn

k

kk

nnkk

nnkk

bxa

bxaxa

bxaxaxa

bxaxaxaxa

                       (2.7) 

where  
jiijij

baaa
11

)1(     )2,( ji ,  wherein  
11

1

1
a

a
b

j

j
   )2( j ; 
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          )1(

2

)1(

2

)1()2(

jiijij
baaa    )3,( ji ,  wherein  

)2(

33

)2(

3)2(

3
a

a
b

j

j
  )3( j , і.e.   

From the system (2.7) the solutions are obtained trivially. 

          Thus, the process of solving a linear system (2.3) by the method of Gauss 

reduces to the construction of an equivalent system (2.7), which has a triangular 

matrix. A necessary and sufficient condition for the applicability of the method 

is that  all the "leading elements" are not equal to zero.  The process of finding 

of the coefficients of the triangular system are usually called direct way, the 

process of obtaining values of the unknowns - the back way. 

          Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 3. 

                

  3. Solving of SLE by iterative methods.  

Method of simple iterations. Seidel method. Terms of convergence 

 of iterative processes 

Method of simple iterations 

With a large number of unknowns in linear system the Gauss method 

scheme becomes very difficult. In these conditions, to find the roots of the 

system is sometimes convenient to use approximate numerical methods. One of 

these methods - the method of iteration.  

Let's we have a linear system 

                                      



















.2211

22222121

11212111

,

,

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa









                               (3.1) 

By entering into consideration matrix 
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



















nnnn

n

n

aaa

aaa

aaa

A









21

22221

11211

 ,  





















nx

x

x

x


2

1

,  























nb

b

b

b


2

1

, 

system (3.1) can be briefly written as the matrix equation                                                            

                                        .bAx                                                 (3.1')                                                                                                                      

 Considering that the diagonal coefficients 

0ija      ni ,,2,1   

let's solve the first equation of system (3.1) relative 1x , the second - a relatively 

2x  etc. Then get the equivalent system: 

                         



















 ,

,

,

11,2211

232312122

131321211

nnnnnnn

nn

nn

xxxx

xxxx

xxxx















                     (3.2) 

where ;
ii

i

i
a

b
  

ii

ij

ij
a

a
 ;   wherein  ji    

  and 0ij  wherein  ji    nji ,,2,1,  . 

  After entering matrix 

      





















nnnn

n

n

















21

22221

11211

  і  





















n








2

1

, 

system (3.2) we can write in matrix form: 

                                                .xx                                                    (3.2') 

 The system (3.2) will be solved by successive approximations. As an 

initial approximation let's take, for example, the right parts column )0(x . 

 Then, gradually construct the vector- columns 

                                        
)0()1( xx        (first approximation) 

                                        
)1()2( xx        (second approximation) etc. 
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 Generally, any thk  )1(  approximation is calculated by the formula: 

                                  
  )(1 kk xx  

      .,2,1,0 k                                 

(3.3) 

 If the sequence of approximations   ,0x  )1(x ,  ,    ,kx    has limit 

)(lim k

k
xx


 , 

then the limit is a solution of system (3.2). Indeed, passing to the limit in 

equality (3.3), we have: 

  )(1 limlim k

k

k

k
xxx






  , 

or 

xx   , 

i.e. the limit vector x  is the solution of system (3.2'), and thus the system (3.1). 

 Let's write the approximation formula in expanded form: 

                    

 






















.,2,1,0;,,1;0

,

1

)()1(

)0(

 kni

xx

x

ij

n

j

k

jiji

k

i

ii







                            (3.3') 

 

Note that sometimes more convenient  to convert system (3.1) to the form 

(3.2) so that coefficients ij  were not zero.  

Overall, with the system 

                              ij

n

j

ij bxa 
1

           ),...,2,1( ni   

you can put: 

                                        ,)2()1(

ijijij aaa   

where 0)1( ija . Then the system is equivalent to the reduced system  

                            j

n

j

ijii xx 



1

   ),...,2,1( ni  , 
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where 

          
)1(

ij

i
i

a

b
  ,         

)1(

)2(

ii

ii
ij




   ,    

)1(

ij

ij

ij



     wherein    ji   

Therefore, in further considerations we will not, in general, assume that 

0ij . 

The method of successive approximations determined by formula (3.3) or 

(3.3'), is called method of iterations. The iteration process (3.3) converges good, 

ie the number of approximations necessary to obtain roots of  system (3.1) with 

the required accuracy, is little if  elements of matrix    are small in absolute 

value. In other words, the successful  process of iterations  will be if  modules of 

the diagonal coefficients of system (3.1) are large compared with modules non-

diagonal coefficients of the system (free members play no role). 

 Remark. In applying the method of iterations it's no need for initial 

approximation to  accept a column of right parts. The convergence of the 

iteration process depends on the properties of the matrix, and if this process 

convergences with any choice of initial approximation of the home, it will be the 

same to the same vector and with any other selection of initial approximation. 

Therefore, in the initial vector iteration can be taken arbitrarily. 

           Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 4. 

Seidel method 

   Seidel method  is a modification of the method of iterations. Its main idea 

is that  in the calculation of (  +1)-th approximation of unknown ix  are 

considered  previously calculated (  +1)-th approximation of unknown values 

1x , 2x , …, 1ix . 

 Let's we have reduced linear system 

              



n

j

jijii xx
1

    ( ni ,...,2,1 ). 
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 Let's choose an arbitrary initial approximations of roots 

              
)0(

1x , 
)0(

2x , …, 
)0(

nx , 

 Onward, assuming that the  -th approximations of roots )(k

ix  are known, 

according to Seidel we will build  (  +1)-th  approximation of roots by the 

following formulas: 

 




 
n

j

k

jj

k xx
1

)(

11

)1(

1 ;  




 
n

j

k

jj

kk xxx
2

)(

2

)1(

1212

)1(

2 ;  

……………………………. 








 
n

ij

k

jij

i

j

k

jiji

k

i xxx ;)(
1

1

1)1(   

……………………………………………… 

)(
1

1

1)1( k

nnn

n

j

k

jnjn

k

i xxx   




    ( ,...2,1,0k ). 

 

Usually Seidel method gives better convergence than simple iteration 

method, but generally speaking, it leads to more cumbersome calculations. 

Seidel process may be convergence, even if the iteration process diverges. 

  Software that implements the described algorithm has been developed  [26, 

29, 32]. The text of the main program procedures is given in the appendix 5. 

 

Terms of convergence of iterative processes 

Let's we have reduced linear system: 

                                                      xx                                       (3.4) 
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where  ],[ ij   

























n





.

.

.

1

- given matrix and vector and 

























nx

x

x

x

.

.

2

1

 – unknown 

vector. 

Theorem. The process of iteration for the reduced  linear system (3.4) 

converges to its the only solution, if any matrix   norm less than unity, i.e. for 

the  iteration process  

    
   1 kk xx         ,2,1k   

(  0x  - arbitrary) is a sufficient condition for convergence 

                                                        .1                                            (3.5)  

Let )1( kx  та )1()( kx k  – two successive approximation solution of linear system 

  xx . At 1p  we have: 

.... )1()()1()2()()1()()(   pkpkkkkkkpk xxxxxxxx              

                                                                                                              (3.6) 

Since   )()1( mm xx   and   ,)1()(   mm xx then 

)( )1()()()1(   mmmm xxxx  and hence:  

)()1()1()()()1( kkkmmmmm xxxxxx    . 

Because of the formula (3.6) we obtain: 

)()1()()1(1)()1()()(

1

1
... kkkkpkkkkp xxxxxxxx 


 


  

Passing in the last inequality to the limit wherein p→∞, we obtain: 

                     







1

)()1(

)(

kk

k
xx

xx                                                   (3.7) 

at 1k  , or 

                               .
1

)1()()( 


 kkk xxxx



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If in the process of calculation found that                               

,
1)1()( 

q

q
xx kk 

   

where ,1 q  то   )(kxx , and, so   )(k

ii xx   

n). ., 2, 1,  (i   

It is assumed that the successive approximation 
 jx  kj ,...,1,0  calculated 

accurately, that there are completely absent rounding error. 

  From formula (3.7), using obtained estimates for  norm of difference of 

two successive approximations, we have: 

.
1

)0()1()( xxxx

k

k 






 

In particular, if you choose ,)0( x  то   )1(x    and  

.)0()1(   xx  

So,   .
1

1

)( 







k

kxx                                               

 

4. Transcendental equation with one variable. Separation of roots. 

Clarification of roots (methods dichotomy, chords, tangents, 

simple iterations) 

Introductory provisions 

  Solving nonlinear equations of the form   f (x) = 0  often can be done in 

the next two stages. In the first stage of a rough definition of the root. Of course 

this can be done graphical manner. The second stage means the root clarify . It is 

often useful following famous theorem on the existence of a root of continuous 

function. 

 Theorem. If the function f (x) is defined and continuous on the interval [a, 

b], and on the ends of the segment takes values of different signs (so 

    0bfaf ), then in the interval  (a, b)  there is at least one root of the 



 32 

equation f (x) = 0 . In other words, in these conditions, there is a point c,  a <c 

<b,  such that the equality     f (p) = 0  justifies. 

  

Solution of nonlinear equations 

Separation of the roots 

         From the geometric point of view the real root of the equation 

                                                    0xf                (4.1) 

 is the abscissa of the point of intersection graph of   y = f (x)  with the axis Ox  

This note is used for graphic separation of  roots of the equation (4.1) when this 

equation has not closely  roots, and the graph of   y = f (x) constructed 

accurately.  

In practice, it is often convenient to  replace the equation (4.1) with equivalent 

equation 

                                                           xx                   (4.2) 

where functions  x  and  x  — are more easy than function  xf . Then, 

construct graphics  xy   and  xy  , desired roots get as abscissa of the 

point of intersection  of these graphs.                                                          

 

Clarification of roots 

Method dichotomy 

         Consider method  division-on-half -  method dichotomy. The method 

consists in the construction of iterative sequence of nested segments, the ends of 

which are the monotonous sequence    
nn

ba , , and ...2,1,,  nba
nn

  , 

where    - the root of the transcendental equation (4.1) on the segment  ba, . 

       The convergence of this method is slow. However, in any interval the  

convergence is guaranteed. 
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 We assume that   0af ,   0bf . Then we find the middle of segment 

 ba,  - point 
2

1

ba 
 .  Calculate the function  xf  in this point. Choose 

one of the obtained segments where the condition     0
1
faf   or 

    0
1

bff   justifies. The selected segment divide in half again by taking  

111
,  baa  or  bba 

111
, ,  and then 

2

11

2

ba 
 .  

 Continuing of iterative process of  division allows you to obtain a 

sequence of nested segments, and .
11 nnnn

bbaa 


       Left ends of  segments 

form a monotonous sequence which in  the limit represents the value 
1

z : 

  ,lim
1

za
n

n



 

and the right ends of segments form a monotonous sequence which in the limit 

represents the value  
2

z : 

  .lim
2

zb
n

n



 

Obviously,  

                                           
.

2

,

12

21

nnn

nn

ab
abzz

bzza






                                      (4.4) 

This error does not exceed the length of the segment 
nn

ab   and goes to zero by 

increasing n  according to the law  geometric progression with denominator 1/2.  

           Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 6, 

7. 

                                                   Newton's method (tangent) 

         Let's define the root of the transcendental equation (2.1) using Newton's 

method (or the method of tangents). In figure 4.1 is shown a graphic scheme that 

implements the method of Newton. 
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Fig. 4.1. Geometric interpretation of Newton's method of solving the transcendental equation 

 

With the graphical method we determine the initial approximation of root of the 

transcendent equation   0xf . The equation of the tangent to the graph of 

 xf   in the point 
0

x   looks like 

         ,)(
OOOK

xxxfxff                                                                                            

(4.5) 

     where )(
0

xf   - value of derivative of the function  xf  at the point 
0

x . 

 At 0,
1


K

fxx  . Then, from (4.5) we receive 

                                                   .
)(

)(
1

O

O

O
xf

xf
xx


                                           (4.6) 

Continuing the process of constructing iterative sequence  
n

x  , obtain the 

following recurrent formula for the implementation of the iterative process of 

approximation to the root of the transcendental equation 

                                          ...2,1,0,
)(

)(
1







n
xf

xf
xx

n

n

nn
                              (4.7) 

Newton's method, implemented by (4.6), has a high rate of convergence, but it is 

very sensitive to the choice of initial approximation 
0

x  . Figure 4.5 shows that 

the choice as the initial approximation  
01

x  (point A  on  xf , which is located 
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further from the desired root  ,  than 
0

x ) leads at the first step to the "loss"  the 

point 
A

x   from  limits of the interval   ba, .   

If   baxMxfmxf ,,)(,0)(   (m  - the smallest value of derivative 

)(xf   в  ba,  ; M  - the largest value of derivative  in  ba,  ), then there such 

 :    ba,min0  , that for any choice of initial approximation on the 

interval       ba,,     there is an endless iterative sequence (4.6) and 

this sequence convergences to the root of the transcendental equation 

  0xf . 

To evaluate the error of the n  - th approximation  
n

x   you can use the formula      

                                            
1

)(

m

xf
x

n

n
                                           (4.8) 

where 
1

m  - the smallest value of the first derivative module )(xf    in the 

interval  ba,  . 

        Iterations method 

 One of the most important methods of numerical solution of 

transcendental equations is the method of iterations (or - the method of 

successive approximations or method of simple iterations). 

 Transcendental equation (2.1)  

           0xf  

 present to the form 

                                                             )(
1

xfx                                            (4.9) 

          where  xxfxf  )()(
1 . 

 Using graphical method, define the approximate value of the root 
0

x   from 

the area of the function definition )(
1

xf    and substitute it in the right side of 

equation (4.9). Let's build sequence   
n

x  of numbers, determined using iterative 

formula 
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      ,...2,1,0),(
11




nxfx
nn

 

Sequence   
n

x  of numbers  
n

x   is called iterative sequence. If there ,lim 


n
n

x   

then passing in equity (4.9) to the limit and assuming  function )(
1

xf   is 

continuous, we obtain:    

       ,limlim
11 n

n
n

n
xfx





  або      ).(

1
 f  

From the last equality comes, that    will be the root of the transcendental 

equation (4.9), and therefore, and equation (4.1). Iterative process continues 

until justifies the condition 

                                                              ,
1


 nn

xx                                   (4.10) 

          where     - задана похибка обчислення кореня   . 

Before the proof of the convergence of iterative sequence dwell on Lipschitz 

condition, which is as follows. Function  xf  satisfies Lipschitz if there exists a 

constant 1q , that any 
21

, xx , owned segment  ba, , performed inequality 

            .)()(
2121

xxqxfxf   

If the function of (4.1) satisfies (4.10), it is continuous on the interval  ba,  . 

Give argument  x   the increment x . Using the Lipschitz condition, we get the 

confirmation of continuity of functions  xf  on the interval   ba, . 

     
.0lim

,

0





f

xf

x


 

Theorem on the convergence of iterative sequence can be formulated as follows. 

Suppose that the function  xf
1

 s defined and differentiated in the interval  ba, ,  

and all of its values are in ],[ ba . Then using Lipschitz conditions  

1
)(

1  q
dx

xdf
 (at bxa   ) we obtain, that the iteration process  )(

11 nn
xfx 


 

convergences regardless of the initial value ],[ bax
O
  and the limit value 

n
n

x


 lim  is the only root of equation  )(
1

xfx    on the interval   ba,  . 
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Let’s prove this statement. Take initial approximation solution of the 

transcendental equation (4.1)  
0

x  on the interval  ],[    , which is remote 

from the point   at a distance of no more than   (  
O

x ).Perform iterative 

process using Lipschitz conditions and taking into account (4.9) 

.

.................................................................

,)()(

,)()(

),()(),(

22

11212

111

11111









n

O

n

n

O

OO

OO

qxqx

qxqxqfxfx

qxqfxfx

fxfxxfx









 

 

       (4.11) 

 

The theorem remains valid if the function )(
1

xf   is defined and differentiated in 

the interval   , . To assess the approximations let's use inequality 

     .
1

11 nnn
xx

q

q
x 





  

If  
2

1
q  then come to (4.10). Finally 

     .
1

 
n

x    

       Software that implements the described algorithm has been developed  [26, 

29, 32]. The text of the main program procedures is given in the appendix 8. 

 

5. Systems of  transcendental equations. The solution of two 

nonlinear equations by Newton method                                               

Systems of nonlinear equations 

 Consider a system of nonlinear equations 

                                



















0),...,,(

........................

0),...,,(

0),...,,(

21

212

211

nn

n

n

xxxf

xxxf

xxxf

                                      (5.1) 
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with real left  parts. 

Write shorter system (5.1). The set of arguments 
n

xxx ,...,,
21

 can be seen as  n -

dimensional column-vector x . Similarly, a set of functions 
n

fff ,...,,
21

 is also 

n -dimensional column-vector (vector function) f . 

To solve the system (5.1') we will use the following method of successive 

approximations. Suppose that k -th approximation was found  

  ),...,,(
)()(

2

)(

1

)( k

n

kkk xxxx   

                                           
)()( kkxx                                                (5.2) 

where ),...,,(
)()(

2

)(

1

)( k

n

kkk    - amendment (error) of the root. 

Substituting expression (5.2) in equation (5.1 '), we have: 

 0)( )()(  kkxf  .                                                                            

Assuming that the function )(xf  continuously differentiated in some area, 

which contains x  and )(kx ,  we decompose the left side of the last equation in 

powers of the small vector )(k ,  leaving only the linear terms of the series: 

                      0)()()( )()()()()(  kkkkk xfxfxf                            (5.3) 

 

From equalities (5.3)  follows that if denote )(xW  the Jacobi matrix of the 

derivatives of system of functions n
fff ,...,,

21  relatively to variables 

n
xxx ,...,,

21 , ie  

 













j

i

x

f
xWxf )()( ,      nji ,...,2,1,  ,       

the system (2.14 ') will be the linear system regarding modifications 
)(k

i
  

ni ,...,2,1  with the matrix )(xW , and therefore formula (5.3) can be written as:  

 0)()( )()()(  kkk xWxf  .     

Hence, assuming that the matrix )( )(kxW  is nonsingular, we get:

 )()( )()(1)( kkk xfxW  . 

 (5.3'). 
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So, 

 )()( )()(1)()1( kkkk xfxWxx       ,...2,1p                                             (5.4) 

(5.4) – the Newton method. 

For the initial approximation )0(x  we can take rough approximation  of the 

desired root. 

                            The Newton method for a system of two equations 

          Let 
nn

yx , - approximated roots of the system of equations                  

     








0),(

0),(

yxG

yxF
                                                   (5.5) 

where F  and G  - continuously differentiated functions. Suppose 

 
nn

hxx  ;      
nn

kyy  , 

we have: 

                    








0),(),(),(

0),(),(),(

nnynnnxnnn

nnynnnxnnn

yxGkyxGhyxG

yxFkyxFhyxF
                        (5.6) 

If  Jacobian  

 0
),(),(

),(),(
),( 






nnynnx

nnynnx

nn yxGyxG

yxFyxF
yxJ , 

then from system (5.6) we obtain 

                       
),(),(

),(),(

),(

1

nnynn

nnynn

nn

n yxGyxG

yxFyxF

yxJ
h




 ,                             (5.7) 

                            
),(),(

),(),(

),(

1

nnnnx

nnnnx

nn

n
yxGyxG

yxFyxF

yxJ
k




 .                               (5.8) 

     So we can put: 

                   
),(),(

),(),(

),(

1

nnynn

nnynn

nn

n yxGyxG

yxFyxF

yxJ
xx




                             (5.9) 

                           
),(),(

),(),(

),(

1

nnnnx

nnnnx

nn

n
yxGyxG

yxFyxF

yxJ
yy




                             (5.9') 
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           ,...).2,1,0( n  

The condition for stopping the iterative process will be the following: 

  ),max(
nn

kh , 

where   - the given  precision of solving the problem. 

The initial values of roots are determined roughly approximated. 

          Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 9. 

 

 6. Differential equations. Methods for solving differential 

equations.  Systems of differential equations 

Basic concepts 

Differential equations - are such equations which  containing derivatives 

of the unknown function of one or more independent variables. 

Equations containing derivatives by several independent variables, are 

called differential equations with partial derivatives. 

Equations containing derivatives of several independent variables, called 

partial differential equations.  

General view of the differential equation of n-th order is following: 

                              
  nyyyyxF ,...,,,,   = 0.                         (6.1) 

This is an implicit  form of differential equation.  Explicitly form of the equation 

of n-th order will be the  equation which is solved relatively older derivate: 

                    
  .,...,,,, 1)(  nn yyyyxfy                           (6.2) 

  Let the variable x takes values in the interval I  R =(–∞, ∞). The solution 

of the differential equation on the interval I is called such a differentiated in I 

function )(xy  ,  after setting  to the equation  it rotates in equality for all xI 

(identity on the set I). The chart of the solution of differential equations called 
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the integral curve. The general solution of equation usually contains one free 

numeric parameter  and has the form 

                                                    y =  (x, C)                                                  (6.3) 

where С — said parameter, φ — any function. Equality (6.3) determines the  

family of  functions, whichdepend on the parameter C. Allocation of single 

solution from a family of solutions  (6.3)  can be satisfied if the known initial 

value  y(x0) = y0  for some x0 I.    

The general solution of equation (6.1) or (6.2) is a family of functions of 

form:    

                                    y =  (x, C1,…,Cn),                                       (6.4) 

where C1,…,Cn — numeric parameters that are called arbitrary constant, and 

each function of the family is a solution of equation (at some numerical 

interval). Parameters С1,…,Сn can be determined by the initial conditions of the 

form          y(x0) = y10,…,y
(n–1)

(x0) = yn0.  

There are situations where solutions of differential equations in explicit 

form (6.3), (6.4) can not get, but can be found the so-called general integrals, or 

general solutions of these equations. Thus the general integral differential of the 

equation (6.1)  or (6.2) is the equation which is not an  identity   

                                       0,...,,,,
21


n

CCCyx ,                             (6.3a) 

The function  is also called a general integral equation. 

 

 

 

 

 Existence and uniqueness of solutions of differential equations of the first and 

n-th order 

 We further consider equations  solved relatively senior derivative. 

Consider the equation of the first order                                    
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),( yxfy  . 

Let function ),( yxf  is defined in some open area D  of the plane XOY  (Fig. 

6.1), the interval  I is a subset of  D projection on the set R. Let in D  is the point 

M  with coordinates  (
00

, yx ) (х0I). 

 

                                                          

                                                                                         

                           

 

 

 

Fig. 4.1. Geometric interpretation of solutions of differential equations 

 

The problem: to find in the interval I the solution of the equation, integral curve 

of which passes through the point M, i.e. to find a function y = φ (x), x  I, 

satisfying the initial condition    

                                        
0xxy  =  (x0) = y0.                                    (6.5) 

This problem is called the Cauchy problem. The following theorem formulated 

conditions of existence and uniqueness of "local" solution to this problem. 

 1 Existence and uniqueness. If the function ),( yxf  is defined and 

continuous in D  with its partial derivate 
y

f




, then for any point M(x0, y0),  

owned area D , exists the interval I, containing a point x0 and in which is defined 

and the unique solution )(xy   of the equation,  which satisfies the initial 

condition (6.5). 

Under the uniqueness of the solution is to understand the following: if 

there are two solutions of the equation which are the same at the point x0, then 

the solutions coincide on the common part of  interval of their  definition. 

D                 M(x0;y0)   

   

                  0                                                          

    y=φ(x)      
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 Geometrically in theorem states that under the conditions of the theorem 

through each point inside the area D  is the only integrated curve. 

 Now formulate theorem which is  the analog for previous for  the  

equation of n-th order solved relatively senior derivative (of the form (6.2)) with 

initial conditions: 

                               
)1(

0

)1(

00 000
,...,''; 






 n

xx

n

xxxx
yyyyyy   .     (6.6) 

  2 Existence and uniqueness. If the function ),...,,,,( 121 nzzzyxf , which 

depends upon 1n  variables x, y, z1,…, zn-1, defined and continuous in some 

(n+1)-measurable area D  together with its derivates 
121

,...,
;

,,
















nz

f

z

f

z

f

y

f
, 

then for any point ),...,,,,( )1(

0

"

0

'

000

nyyyyxM  that belongs to the area 

),...,,,,( )1(

0

"

0

'

000

nyyyyxM  D , exists the interval  I, containing a point x0 and in 

which is defined and the only solution )(xy   of the equation (6.2), that 

satisfies the initial condition (6.6). 

 The concept of uniqueness of the solution in this theorem is the same as in 

the previous.  

From 1, 2, it follows that on their   conditions if the presence of general 

solution of equation (6.2) in the form (6.4): 

y =  (x,С1,…,Сn) 

constants 
n

CCC ,...,,
21

 are defined uniquely by  initial conditions (6.6) for an 

arbitrary vector (x0, y0, y0,…, y0
(n1)

)  D, i.e. the system of equations   

                                  

)1(
0210

)1(

'
0210

0210

),...,,,(

...............................

;),...,,,('

;),...,,,(

 





n
n

n

n

n

yCCCx

yCCCx

yCCCx







                    (6.7) 

has a unique solution. Conversely, if for an arbitrary vector (x0,y0,y0,…, y0
(n1)

) 

system (6.7) has a unique solution, then the Cauchy problem (6.2), (6.6) has a 

unique solution for any point М D.    
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 The conditions imposed in theorems 1.2 on the right sides of equations 

(6.2) sufficient for the existence and uniqueness of solutions to the equation. For 

the existence of local solutions (such referred to Theorem 2) is sufficient to 

require continuity of f in the area D .  

Methods for solving differential equations 

Problem solving ordinary differential equations in the general case is 

more complicated than the problem dealing with calculation of single integrals, 

and therefore the fate of cases of  explicitly integration  here is much lower. 

Numerical methods for solving differential equations can be divided into 

two classes. One of them includes methods that use one starting value of 

solution at every step, and the other methods  use multiple values at every turn 

(multistep methods). The last are characterized that on the basis of earlier got a 

few values of function   are built the new which are then specified with 

differential equations. 

The first class include Runge - Kutta methods, including methods of Euler 

- Cauchy and trapezoids. The second include, for example, the method of 

Adams, Adams-Krylov method. 

        Consider first the Euler-Cauchy method. 

        Let is given the differential equation  

                                                 ),( yxf
dx

dy
 ,                                                    (6.8) 

where (x, y) belongs to area G with the initial condition  

                                     x = x0, y0 = y(x0)                                           (6.8) 

Method of constructing an approximate solution of the Cauchy problem (6.8), 

(6.8) is based on the concept of so-called  Euler polyline. Euler polyline is a 

graph of piecewise linear function that is built based on the following rule. Let h 

— small positive number (step of method). Consider a Cartesian plane point 

with coordinates  ( x1, y1), where  

x1 = x0 + h, y1 = y0 + hf (x0, y0). 
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Note that, according to Taylor's formula, thanks to equality (6.8), (6.8)  y1 - 

value can be seen as approaching of the values of the solution y(x1) of  Cauchy 

problem. If the point (x1, y1) belongs to set G, then we continue to build on 

inductive rule                   y і + 1 = y і + hf (x і, y і), і = 0, 1, 2,… . Each value  yі  is 

seen as approximation to the value of the desired solution y at the point xі. So we 

get a sequence of points (xі, yі) ,   і = 0,1,2,… , where all  xі  are situated on right 

of the point x0. A similar construction, if necessary, carry out and on left of point 

x0. According to  this sequence we build piecewise-linear function 

 y(x) = yі + f (xі, yі)(x  xі), x [ xі, xі + 1] , і = 0, 1, 2,… , 

which (or its chart) is called the Euler polyline.  There are several theories that 

guarantee that under certain conditions the  Euler polyline aims to the solution 

of the Cauchy problem (3.10), (3.10), when the method step h aims to 0.  

Graphical representation of the calculation scheme of the method Euler - 

Cauchy shown in Fig. 6.2. 

 

                             Рис. 6.2. Calculation scheme of the Euler - Cauchy method  

 

Let's given  the differential equation         

                                                            ).,( yxf
dx

dy
                                               (6.8) 

1 – Integral curve; 

2 – Euler polyline 
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Need to find an approximate solution (6.8) at the points with coordinates 

nhxxhxxhxx
OnOO
 ,...2,

21
, where h  - constant pitch; 

O
x  - 

coordinate of start point of interval. 

The initial condition )(,
OOO

xyyxx   . The approximate value of the first 

derivative has the form 

                                                    ,1

h

yy

x

y

dx

dy
kk

k

k

k

k






                                          (6.9) 

where 1...1,0  nk  . 

Equating (6.8) and (6.9), we obtain: 

        ),,(1

kk

kk yxf
h

yy



  

from whence: 

                                                             ).,(
1 kkkk

yxhfyy 


                                (6.10) 

Using the recurrence formula (6.10) for points 1...1,0  nk  we build the  Euler 

polyline 2, which replaces approximately the  integral curve 1 (see. fig.6.2). The 

gist of Euler-Cauchy method  is that in the beginning of each interval   
1

,
kk

xx  

we held tangent to the integral curve 1. 

        The accuracy of the method Euler-Cauchy is small. The error of method is 

proportional to 
2h . 

A variation of the method of Euler-Cauchy is the  trapezoidal method. It is 

implemented at each step using recurrent formula 

                            .),(,),(
2

1

















 kkkkkkkk
yxhfyhxfyxf

h
yy         (6.11) 

        The error of the  trapezoidal method is proportional to 
3h  and it also 

includes the general methods of Runge-Kutta. 

        Multi-step solving of differential equations (finite-difference methods) are 

based on the using of the rezults of solving of the previous steps. This can 

increase the speed of computing. For the realization of the finite-difference 
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methods for the numerical integration of differential equations need to know the 

function and its derivatives at several points close to the original. Here we can 

mark Picard method and the method of decomposition. 

Systems of differential equations 

 The aggregate of mutual relations 

                               



















0),...,,,...,,(

.................................

0),...,,,...,,(

0),...,,,...,,(

111

1112

1111

nn

n

n

yyyyxF

yyyyxF

yyyyxF

                              (6.12) 

where x - independent variable, 
n

yyy ,...,,
21

 - unknown functions of x ,  

n
FFF ,...,,

21  – known function, called a system of first order differential 

equations. The solution of this system are functions )(),...,(),(
21

xyxyxy
n

, 

which when substituted in (6.12) turn the system on identity. 

If the system of differential equations (6.12) admits the possibility of solving 

relatively derivatives, we get a system 

                               














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

),...,,,(
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),...,,,(

21

212
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1

nn
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n
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yyyxf
dx

dy

yyyxf
dx

dy

yyyxf
dx

dy

                            (6.13) 

which is called normal. 

 An example of one normal equation of first order is 

 ),( yxf
dx

dy
 . 

This equation gives the field of directions in the plane yx, . The solution of the 

equation is the one-parameter family of curves, located in one plane. If on this 
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plane is given  point ),(
00

yx  and functions ),( yxf , 
y

f




 –  continious, then the 

equation has a unique solution that satisfies the initial conditions 
00

)( yxy  .  

 Now, take two equations 

 












),,(

),,(

212

2

211

1

yyxf
dx

dy

yyxf
dx

dy

              or           












),,(

),,(

2

1

zyxf
dx

dz

zyxf
dx

dy

. 

Under certain conditions, we get the solution 

 )(
11

xyy  ;    )(
22

xzy  . 

This solutions can be regarded as parametric equations of the curve in the spatial 

coordinate system zyx ,, .  

 Thus, the solution of one equation  can be represented as the curve in two-

dimensional space. Solution of two equations of the first order  can be visualized 

by the curve in three dimensions. Solution of  n  equations of the first order 

forms a curve in the )1( n -dimensional space. These curves are called integral 

curves. 

        The numerical solution of systems of differential equations is carried out 

similarly solving a differential equation. 

 Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 

10. 
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 7. The characteristic determinant and characteristic equation of 

the matrix. The eigenvalues and eigenvectors of matrices 

The characteristic determinant  

and characteristic equation of the matrix 

Let's we have a square matrix  ijAA  . Consider a linear transformation 

                                                Axy  ,                                                (7.1) 

where x and y — n-dimensional vectors of some n-dimensional space. 

 Definitions. Nonzero vector called eigenvector of the matrix, if in the 

result of the corresponding linear transformation  this vector becomes the 

collinear to it, i.e.  the converted vector is  different from the original only by  

scalar multiplier. 

In other words, a vector 0x  is called eigenvector matrix A, if the matrix 

transforms the vector x in the vector x : 

                                                xAx                                                  (7.2) 

 The number   of equality (7.2) is called eigenvalues or characteristic 

number of the matrix A, appropriate the  eigenvector x. 

                                           ,0)(  xEA                                           (7.3) 

Where matrix EA   called characteristic matrix. Equation (7.3) is a 

linear homogeneous system that has nonzero solution if and only if the 

determinant of the system is zero, ie when the condition 

                                         .0)det(  EA                                          (7.4) 

The determinant (7.4) is called the characteristic  determinant of matrix 

A, and the equation (7.4) is called the characteristic  equation of  A. In expanded 

form the characteristic equation (7.4) can be written as follows: 

                              0
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22221

11211
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


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

nnnn

n
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aaa

           (7.4’) 
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or 

              0)1()1(... 1

12

1

1

1  



n

n

n

nnnn           (7.5) 

Polynom, which is standing in the left side of the equation (7.5) is called the 

characteristic polynom of matrix A. Its coefficients ),...,2,1( nii   are determined 

by the following rules. Coefficient 1  is equal to the sum of the diagonal 

elements of the matrix A, i.e. 



n

i

iia
1

1 . This number is called the  track of 

matrix A and denoted: SpA1 . Coefficient 2  is the sum of all the diagonal 

minors of the second order of the matrix A. Generally, coefficient k  is the sum 

of all the diagonal minors of the   k -th order of the matrix A .  Finally, free term 

n  is equal to the determinant of the matrix A : .det An   

Characteristic equation (7.5) is an algebraic equation of n -th degree 

relative   and has at least one real or complex root. Let )(,,, 21 nmm    - 

different roots of equation (7.5). These roots are called eigenvalues or 

characteristic numbers of the matrix, and the set of all eigenvalues are called the 

spectrum of matrix A . Let's take any root j   and substitute it in equation 

(7.4). Then we have 0)(  xEA j  or, in an expanded form, 
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

                           (7.6) 

Since the determinant of the system (7.6) 0)det(  EA j , then this system 

has non-zero solutions which are the eigenvectors of matrix A corresponding to 

its eigenvalues j . If the rank of the matrix jA  - is equal )( nrr  , then exist 

rnk   linearly independent eigenvectors )()2()1( ,,, kjjj xxx  , corresponding to j  

.  

 Remark. We can prove that the number of linearly independent 

eigenvectors does not exceed the multiplicity of this root. It follows that if the 
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roots of the characteristic equation (7.5) are different, each eigenvalues  

corresponds to within a proportionality factor one and only one eigenvector.                        

Finding eigenvalues and eigenvectors matrix 

 Introductory remarks 

In solving theoretical and practical problems it is often necessary to 

determine the eigenvalues of  matrix, which means  calculate the roots of its 

characteristic equation      0det  EA    and find the corresponding 

eigenvectors of matrix A.  The second problem is more easier: if the roots of the 

characteristic equation are  known, then  the calculation of eigenvectors reduced 

to finding of some nonzero solutions of  homogeneous linear systems. 

Therefore, we   will first deal with the first problem - calculation the roots of 

characteristic equation. 

  Here it is mainly used two methods:  

 1) deployment of characteristic determinant to the  polynom of n-th 

degree:    EAD   det  with following solving of the equation   0D  with 

one of the known approximated methods and  

 2) an approximate determination of the roots of the characteristic equation 

without prior deployment of characteristic determinant. 

Deploying characteristic determinants 

May have characteristic determinant of  matrix  ijaA    as following:             

               
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aaa
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det

21

22221

11211

 

Equating this determinant to zero, we obtain the characteristic equation 

             0D . 

If you want to find all the roots of the characteristic equation, it is advisable 

to pre-disclose determinant. 

Deploying the determinant, get the polynom of n-th degree: 
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       ),1...(1 2

2

1

1 n

nnnnn
D     

where: 



n

a
1

1



  -     the sum of the diagonal elements of the matrix A;                                                  

                    







aa

aa



2  - the sum of all the diagonal minors of the second 

order of the matrix A; 
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
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


3  - the sum of all the diagonal minors of the 

third order of the matrix A; 

and finally, .det An   

 It is easy to ensure that the number of the diagonal minors of k- th order of  

matrix A equals: 

                   
   

!

1...1

k

knnn
C k

n


          ....,2,1 nk   

Hence we find that the calculating of the coefficients of characteristic polynom 

is equivalent to  calculation of   12...21  nn

nnn CCC   determinants of different 

order. The latest problem, generally speaking, is technically difficult 

implemented for large values of .n  Therefore created special  methods for 

deployment of characteristic determinants. 

 

O.M. Krylov method 

 Let 

                                    n

nn ppAED   1

1det                             (7.7) 

characteristic polynom (up to sign) of matrix A. 

According to the identity  of Hamilton-Cayley, matrix A turns in a zero its 

characteristic polynom, so 

                              .01

1   EpApA n

nn                                                                                   
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Take  arbitrary nonzero vector  
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Multiplying both parts of (7.8) on the right on 
 0y , we get: 

                       
      .0001
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nn                                (7.8) 

Let's set  

                                        
   kk yyA 0

    nk ,,2,1   ,                           (7.9) 

then equation (7.8) takes the form:                                                       
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where 
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    .,,2,1,0 nk   

Thus, the vector equality (7.10) is equivalent to the system of equations: 

                            002

2

1

1 jjn

n

j

n

j yypypyp        .,2,1 nj                                             

from which, generally speaking, we can determine the unknown coefficients 

nppp ,,, 21  . 

So based on the formula (7.9):      1 kk Ayy    nk ,,2,1  , the coordinates 

     k

n

kk yyy ,,, 21   of vector  
 ky  are sequentially calculated by the formula: 
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                             (7.11) 

Thus, according to by  Krylov method,  calculating of the coefficients of 

the characteristic polynom (7.7)  is reduced to solving a linear system of 

equations (7.10), the coefficients of which are calculated by formulas (7.11). 

And coordinates of  the initial vector 

                                          
 

 

  
















0

0

1

0

ny

y

y   

are arbitrary. If the system (7.10) has a unique solution, then its roots 

nppp ,,, 21   are the characteristic polynomial (7.7) coefficients. This solution 

can be found, for example, the method of Gauss. If the system (6) has no unique 

solution, the problem is complicated. In this case, it is  recommended  to change 

the initial vector. 

Leverier method 

This method of deployment of the characteristic determinant is based  on 

Newton formulas for sums of powers of the roots of algebraic equations. 

Let 

                                        det( )E A  
1

1 ...n n

np p                                (7.12) 

— characteristic polynom of the matrix A ija    and 1 2, , , n   — complete 

aggregate of  its roots, where each root is repeated as many times as its 

multiplicity. 

 Suppose           1 2 ...k k k

k ns                    ),...,2,1,0( nk  . 

Then, at  k ≤ n  Newton's formulas justify: 
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                                    1 1 1 1...k k k ks p s p s kp               ),...,2,1,0( nk     (7.13) 

From here: 

                                       

 

 

1 1

2 2 1 1

1 1 1 1

,

1
,

2

....................................................

1
... .n n n n

p s

p s p s

p s p s p s
n

 

  

  





     


                            (7.14) 

If the sums 1 2, , , ns s s  are known, then using formulas (7.14) we can step by 

step  determine the coefficients 1 2, , , np p p of the characteristic polynom (7.12). 

The sums 1 2, , , ns s s  are calculated as following: for 1s  we have: 

1 1 2 ... ns SpA       , i.e.  

                                             1

1

.
n

ii

i

s a


                                               (7.15) 

   Further, as we know, 1 2, ,...,k k k

n    are the eigenvalues of matrix  
kA . So  

1 2 ... ,k k k k

k ns SpA        that is, if   
,

kk

iiA a 
 

 then 

                                                     
( )

1

.
n

k

k ii

i

s a


                                              (7.16) 

Degrees 1k kA A A  are calculated by direct multiplication. 

Thus, the scheme of deployment of characteristic determinant by Leverier 

method is very simple, namely:  

- calculation of degrees 
kA  ),...,2,1( nk   of matrix A,  

- then are found  the corresponding ks  - sums of the elements of main 

diagonals matrix kA ,  

- and, finally, by formulas (7.14) determine the unknown coefficients ip  

),...,2,1( ni  . 
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Leverier method rather laborious because of counting the high degrees of 

matrix. Its main advantage - easy scheme of calculation  and the absence of 

exceptional situations. 

 

 

  8. Interpolation problem with simple nodes. Vector interpolation 

problem with simple nodes 

Formulation of the problem of interpolation 

 In the most general case the interpolation problem consists in constructing 

such a function )(xF , which in the given points  
n

xxxx ,...,,
210

  gets values 

)(),...(),(),(
210 n

xfxfxfxf  of given function )(xf , and at other points of interval 

 ba,  approximates it. Function )(xF  is called interpolating function towards 

)(xf . 

  Let in the interval   ba,  are given  1n  points 
n

xxx ,...,,
10

,  which are 

called  interpolation nodes, and the values of a function )(xf  at these points   

                             .)(,...,)(,)(
1100 nn

yxfyxfyxf                          (8.1) 

We must construct a function )(xF  ,  which belongs to the known class  and  

takes in the interpolation nodes  the same values as ),(xf   i.e. such that 

                                 .)(,...,)(,)(
1100 nn

yxFyxFyxF                       (8.2) 

Geometrically this means that you need to find the curve )(xFy   of a 

certain type, which is passing through a given  system of points  ),(
iii

yxM   

,...)2,1,0( i   

In this general formulation, the problem can have many solutions or do 

not have any. 

However, this task becomes unambiguous, if instead of an arbitrary 

function )(xF  we search the polynom )(xP
n

 of degree not greater than n , 

satisfying the condition (8.2), i.e. such as .)(,...,)(,)(
1100 nnnnn

yxPyxPyxP   
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The obtained interpolation formula )(xFy   is usually used for 

calculating approximate values of the function )(xf  for values of the argument 

x  that differs from interpolation nodes. Such operation is called the 

interpolation of  function  )(xf . Wherein is considered interpolation in the 

narrow sense, when   ,,
0 n

xxx   i.e. values of  x  are intermediate between 
0

x  

and 
n

x , and  extrapolating, when  
n

xxx ,
0

 . Further, the term  interpolation we 

will use for the first and second operation. 

          The standard interpolation by Lagrange 

For any given interpolation nodes often use so-called Lagrange 

interpolation formula. 

Let in the interval   ],[ ba  are given  1n   different  values of argument: 

n
xxxx ,...,,,

210
  and  known for the function  )(xfy    corresponding values: 

 ,)(
00

yxf 
nn

yxfyxf  )(,...,)(
11

. 

We must build a polynomial  )(xL
n

  of degree not higher n ,  that has in given 

nodes 
n

xxx ,...,,
10

 the same values as function )(xf , i.e. such as 

 
iin

yxL )(     ),...,2,1,0( ni   

At first let's solve the partial task: to build a polynom )(xp
i

 such as 

0)( 
ii

xp  при ij   і 1)( 
ii

xp  . 

In short, these conditions can be written as follows: 

                              
ijii

xp )(








ijif

ijif

,0

,1
                                    (8.3) 

where ij  - Kronecker symbol. 
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                                    Рис. 8.1.  Interpolation polynom of Lagrange 

 

As the sought-for polynom becomes zero at n  points  

,,...,,,...,,
1110 nii

xxxxx


 it looks as following: 

               ),)...()()...()(()( 1110 niiii xxxxxxxxxxCxp                 (8.4) 

where iC  - constant coefficient. Putting 
i

xx   in the formula (8.4) and 

considering that ,1)( 
ii

xp  we get: 

               .1))...()()...()((
1110


 niiiiiiii

xxxxxxxxxxC  

From here: 

                 .
))...()()...()((

1

1110 niiiiiii

i
xxxxxxxxxx

C





 

Substituting this value in the formula (8.4), we have: 

                    .
))...()()...()((

))...()()...()((
)(

1110

1110

niiiiiii

nii
i

xxxxxxxxxx

xxxxxxxxxx
xp








                (8.5) 

 Now let's solve the general problem: to find a polynomial )(xL
n

 that 

satisfies the conditions specified above: 
iin

yxL )( . 

This polynom is as follows: 

                                                      .)()(
0





n

i
iin

yxpxL                                    (8.6) 

 y=f(x) M0 

M1 

o xo x1 

yo 

y1 

x2 

yn 

Mn 

 y=F(x) 
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In fact, the first, obviously, the degree of the polynom )(xL
n

 is not  higher  

than n ,  and secondly, on condition (8.3) we have: 

 
jjjj

n

i
jjijn

yyxpyxpxL 


)()()(
0

            ).,...,1,0( nj   

  

    The vector interpolation by Lagrange 

Let in the interval   ba,  are given point  
k

t   (interpolation nodes) and the 

vectors    
kkk

yxv ,    as  the  values of some vector-function  )(tf   at these    

points, i.e. 

                                         .,......,1,0,,)( nkyxvtf
kkkk

                      (8.7) 

We must find a vector-function  )(),()( tytxtr  ,   ba,t , graph of which 

contains points  },{)(
jjjj

yxvtM  .  

 In case of difference of nodes  
kj

tt (  при kj   , ),0, nkj  , the 

interpolation problem (4.9) always has a unique solution:                        

                     



n

s

s

sn
tptPtr

0

)()( (8.8)                   

in the class 
n

P  of polynoms of degree n of one variable with vector coefficients 

s
p .  Finding of the polynomial 




n

s

s

sn
tpxP

0

)(  is  reduced to solving of  

compatible systems of linear equations: 

                              



n

s
kkk

s

kskn
yxvtptP

0

},,{)( nk ,...,2,1,0     (8.9) 

relatively to the vector-coefficients  }.,......,,{
10 n

ppp   

 But there's another way to solve this problem - you need to use the 

Lagrange formula for vector interpolation problem: 

                                  ,)(},{)()()(
00





n

s
ssss

n

s
ssn

tLyxtLvtLtP                   (8.10) 
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where  )(tL
s

  –   elementary Lagrange polynomials defined by the formulas:                         

      .,0,
)).....()().....((

)).....()().....((
)(

110

110 ns
tttttttt

tttttttt
tL

nssssss

nss

ks



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



 (8.11)    

        Software that implements the described algorithm has been developed . The 

text of the main program procedures is given in the appendix 12.   

 

9. Bezier curves on the plane and in space 

Bernstein polynomials 

 Let’s we have function     1,0Cxf  . Bernstein polynomial  xfbn ;  - is 

the polynom  

                   
 
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m
fxpxfb

0 0

, 1:; ,  1;0x    (9.1)                                                                                                       

  At  n  the Bernstein polynomial   xfbn ;  converges uniformly on 

the interval  1;0  to the function  xf : 

                                              0;lim 


xfxfbn
n

                                  (9.2) 

Thus we have the estimate 
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n
fxfxfbn

1
;;  ,                                     (9.3) 

Standard operator Bernstein      1,01,0: CCBn   acts by the formula: 

                 
 
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, 1;: .        (9.4)                                                                                                                                                              

Function     bxxaxy  1  reflects the interval  1,0  to the interval  ba, , and 

function  
ab

ay
yx




  performs inverse transformation the interval  ba,  to the 

interval  1,0 . These functions generate mutually inverse reflections 

      1,0,: CbaC   і      baCC ,1,0:    

by formulas: 

         xabafxfxf   ,   , 
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       













ab

ay
fyfyf  ,    bay , . 

Bezier curves on the plane and its properties 

Let's define basic Bernstein polynomials 

   
 

    n,...,0k,1,0t,
kn

t1kt
!kn!k

!nkn
t1ktknCtk,np 








 . 

Bezier curve is defined by vertices  Pk (k = 0,1,…,n)  of  basic polygon, 

which uniquely identifies the position of the curve in the plane or in space. To 

construct a Bezier curve we using Bernstein polynomials and the vertices   

Pk(xk,yk),                     k = 0,1,…,n,  that is, Bezier curve looks like:  

                    10
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
             (9.5) 

where рn,k(t) - к-th function of Bernstein basis of order n, its maximum is 

reached at t=k/n. 

 Or in the the components: 
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        (9.6) 

It is easy to see that each of these components can be count separately as 

Bernstein polynomial for corresponding coordinate functions  of the parameter t. 

 For Bezier curve we have the following properties: 

1.   00   (The point 0  is the starting point of Bezier curve). 

2.   n 1  (The point 0  is the end point of Bezier curve). 

3.    010  n   (vector 01   determines the direction of the tangent to the 

Bezier curve at the start point of the curve). 

4.    11  nnn    (vector 1 nn   determines the direction of the tangent to 

the Bezier curve at the end point of the curve). 

5.    210 2)1(0   nn  

6.    212)1(1    nnnnn  
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 If we  conjugate  two segment Bezier curve with the basic polygons  

n ,..., 10   and  mQQQ ,..., 10 ,  then the condition of matching of  last point of  

the   1-st segment and  the first point of 2-nd segment  (condition coincidence of 

segments) takes the form: 

                                                   
0Qn  .                                                (9.7) 

Conditions preservation slope tangents at the point of connection of segments  

has the form: 

                            0110 QQmnQ nnn    .                             (9.8) 

If you need to not change the length of the tangent, we get a condition of 

tangential connection: 

                               0110 QQmnQ nnn                                    (9.9) 

Similarly, there is a condition of conjugate of derivates of 2-nd order: 

                         210120 2121 QQQmmnnQ nnnn           (9.10) 

Example. Let  1,10  ,  3,21  ,  3,42  ,  1,33  . 

Then     
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Or by coordinates: 

  









22

3323

)2/1(62/5166)(

5)1(1334)(

tttty

ttttttx

. 

Features approximation using Bezier curves 

 1. Degree (order) of curve is by one less than the number of vertices of the 

base polygon. So, the only way to reduce the degree of curve - is to decrease of 

the number of vertices of the base polygon. 

         2. All the  functions )(, tb kn  are not equal to zero in the interval [0,1], so 

changing  one vertex of base polygon  changes the entire curve. 
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10. Linear and homogeneous coordinates on the plane 

Basic concepts and definitions 

Three points   21o A,A,A   on a plane     are called points of general 

location, if there is no line, which includes all these points. These points do not 

coincide with each other and the line, passing through two of these points, 

contains no third point.  

Rapper А on the plane   we will call the ordered three points 

 21o A,A,AA  of  general location on this plane .  

Linear coordinates on the plane  , which are defined by  rapper                       

A =  21o A,A,A   or the system of linear coordinates, we will call a couple of 

reflections:  2

A R :Crd    (two-dimensional coordinates of the point)  and   

          2

A R :Pnt  (point with two-dimensional coordinates)  

that satisfy the following conditions: 

1) Reflections ACrd  and APnt  are reciprocal  

          
 ,  X  X  ))((CrdPnt

.R  x  x  ))((PntCrd

AA

2
AA

 




X

x   або  
 ,1  Crd  Pnt

.1  Pnt Crd
AA

2RAA
 




   

2) Normalization performed 

             
     ,1;0  ))(Crd  ,0;1  ))(Crd  ,0;0  ))(Crd

.  1;0Pnt    ,  )0;1(Pnt    ,   )0;0(Pnt
2A1A0A

2A1A0A
 





AAA

AAA  

          Let on plane   are two systems of linear coordinates (SLC). The first (х-

coordinates) with rapper  21o A,A,AA , and the second (у-coordinates) – with 

rapper  21o B,B,BB . Let the point Х   has coordinates  21, xxx   in the first 

SLCand coordinates  21, yyy   in the second SLC. Then the reflection  

22 RR : f  and 22 RR : q , which are defined by formulas  

2

BAAB R  ,  ))((PntCrd:)(  )),((PntCrd:)(  yxyyqxxxfy  define replacement of           

x-coordinates to y-coordinates and vice versa. 
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Structure of the totality of systems of  linear coordinates 

 on the plane 

Let on plane    there is a systems of linear coordinates  with rapper  А  of 

three points  of general location  і  22: RR   –  affine species of the type 

).0det,,,()( 2

2   MRbxxx  Then the reflection  11)(    yy   is 

inverse to  reflection    and  exists the rapper  },,,{ 210 CCCC    for which the 

following conditions satisfy:   ., CACA P n tP n tC r dC r d    Wherein  

)}0,1({),( 10   AA PntCPntC . 

 Consequently, transferring the coordinates of points at a fixed SLC using 

arbitrary reflection ),0det,,,,)((: 2

222   MRbxxxRR   

for which the transfer to fixed coordinates SLC via display the coordinates of an 

arbitrary point in the SLC. 

                                    Homogeneous coordinates on the plane 

Homogeneous coordinates on the plane  - is a set of ordered triples of 

numbers  ),0(},,{ 2

3

2

2

2

1321  xxxxxx   for which the following equivalence is 

introduced. The triple },,{ 321 xxx   is equivalent to the triple 

}),,,{},,({},,{ 321321321 yyyxxxyyy    if exists such  t>0,  for which    

).3,2,1(  ktxy kk    

           Usually coordinates },{ 21 xx  define a single class ]1,,[ 21 xx . Reverse 

requires consideration of two cases. 

            Class  ],,[ 321 xxx   at  03 x ,  i.e. consider triples  ).0(},,{ 3321 xxxx   

Let  ./,/ 32

*

231

*

1 xxxxxx   

At  03 x   we have   }1,,{,,{ *

2

*

1321 xxxxx (points of front). So,  front     – 

is the set of classes   ].1,,[ 21 xx   

At  03 x   we have  }1,,{},,{ *

2

*

1321 xxxxx    (points of rear front). So,  rear front  

   – is the set of classes  ]1,,[ 21 xx . 

1)             Class  2

21 ]0,,[ Pxx  ,  i.e. each triple   ),0(}0,,{ 2

3

2

2

2

121  xxxxx  
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defines on the plane the only  point at infinity, which corresponds to a ray that 

starts at the origin O. Always for each class ]0[ 21xx   we can consider normalized 

triple  ).1(}0,,{ 2

2

2

12  xxxx   Wherein vector  1

21 },{ Sxxx    defines the ray  

.},0,,|)0,,{( 1

2211

3

11 SxttxytxyRyypx    

 So, due to the determination of uniformity at 3R \ 0  for classes 
321

xxx  we 

can assume that the third coordinate is )0(1
3
 x  or 0 ( )0

3
x , i.e. we have 

following cases: 

 1.  At 1
3
x  we have the front points 


  

          2.  At 1
3

x  we have the points of rare front ,


  

3. At 0
3
x  we have points at infinity of plane   or the skyline 

0
 . 

Mathematical coordinates and the coordinates of the device 

         Consider on the plane   the Cartesian system of linear coordinates },({ yx -

coordinates) centered at point O(0,0).  

         Definition. Mathematical window – is a rectangle ABCD on the plane,  

(bypass circuit - counterclockwise) whose sides parallel to the axes OX and OY. 

The lenthes of the rectangle sides determine the size  |||||||| CDABrx    and  

|||||||| ADBCry    of mathematical window  along axes, respectively,  OX  and  

OY.  

 Let  ),( yx ssS  – the center of the screen. Then for the vertices of the 

rectangle of window we have  the coordinates 

}
2

,
2

{
y

y
x

x

r
s

r
s  (point  А),           }

2
,

2
{

y

y
x

x

r
s

r
s      (point  B), 

}
2

,
2

{
y

y
x

x

r
s

r
s  ( point  С),            }

2
,

2
{

y

y
x

x

r
s

r
s     (point  D). 

        So, knowing the coordinates of the center of the screen S and the size of the 

rectangle, we completely determine the mathematical window. 

        Definition. On its part, with mathematical Cartesian SLC is related so-

called coordinate system of the device },,{  - a physical screen coordinate 
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system which addresses the physical point (pixel) of screen. The origin of  

coordinate of device system coincides with the top left corner of the  

mathematical window (point D), direction of axes X and   coincide (direction - 

right ) and axes Y and   - is opposite (Y- upwards,   - downwards). Screen size 

along the axes   and   is measured in pixels  – 
xm   along the axis     and  ym   

along the axis  . 

          Definition. Window of device or display area - is also a rectangle ABCD, 

whose sides are parallel to the bounds of screen, and the points A, B, C, D 

coincide with the boundary corner points of the screen. Sizes of sides of the 

rectangle are specified in pixels and determine the size of the screen:  

pixelspixelsx CDABm ||||||||    (width sweep)  and  p i x e l sp i x e l sy ADBCm ||||||||    (height 

sweep). But we must note, that when programming the coordinates of points are 

measured from zero (0 - is the first pixel, 1 - second pixel, etc.) then the last m-

th pixel will be addressed at the number m-1. Therefore,  coordinates of the 

vertices of the display area are:  }1,0{ ym   (point  А),  }1,1  yx mm   (point  B),  

}0,1{ xm   (point  С),  і  {0,0}  (point  D). 

           Formula changes {x, y} - coordinates to },{   - coordinates should look 

like     








.

,





yx

yx
 Therefore, after the substitution of mathematical 

coordinates and corresponding device coordinates for points A, B, C  (point D is  

uniquely determined by points A, B, C, and so it can be neglected),  obtain a 

system of six linear equations with six unknowns ),,,,,(  . By solving 

these equations, we obtain matching math coordinates and the coordinates of the 

device while centering on the center ),( 21 ssS  of the window: 














).
2

1
(

),
2

1
(

yrsk

rsxk

yyy

xxx





             і            

















.
2

1

,
2

1

y

yy

x

xx

k
rsy

k
rsx




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 where  .
1

,
1

y

y

y

x

x

x
r

m
k

r

m
k





  But preserving the aspect ratio while displaying 

on the screen, we must assume that the relation yxyx mmrr /   are satisfied,  

тобто  
x

y

yy
m

m
rr    and  we must calculate  yk  by the formula:  .

1

y

x

x

y

y
m

m

r

m
k 


  

 

11. Basic conversion in the plane. The main symbol of affine 

transformations 

The concept of  transformation on the plane 

Let on the plane   we have  some system of linear coordinates. For any 

linear  transformation A  its mathematical expression  in ordinary coordinates 

has the form   2'

2

2221

1211' ,,,: RxxxxA 







 




 , i.e. the coordinate  

expression  in ordinary coordinates has the form  








.2222112

'

2

1221111

'

1 ,
:





xaxax

xaxax
A .  

Substitution    3231

'

3

'

2

'

3

'

121

'

2

'

1 /,/,/,/,,, xxxxxxxxxxxx  , on condition, that 

3

'

3 xx  , gives the coordinate expression of transformation in homogeneous 

coordinates: 

 














.

,

,

:

3

'

3

32222112

'

2

31221111

'

1

xx

xxxx

xxxx

A 



  

or we get the  matrix expression of transformation  in homogeneous coordinates: 

         


















1

0

0

,,,,

21

2221

1211

321

'

3

'

2

'

1

'







xxxxxxAxx . 

 

Let's consider transformation A,  linear on plane  . The main and the full 

symbols of transformation A we will call the matrices: 
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  


























11

0

0

:,:)(

2

2221

1211

2221

1211







 A
aa

aa
Am   

(here symbol '"m" means main). We shall also denote the symbols )(Am   

and )(A  as  mA  і  A . 

             The fixed point of transformation  :P  is the point X , which 

remains in place under the action of transformation P , i.e. it is a solution of 

equation  XPX  . 

Basic transformation on the plane 

         1. Parallel transfer 

Parallel transfer  :aT  by vector а on the plane   can be defined in 

different ways. 

 Geometric definition. 1) At  0,00 a  (zero vector) let   XXTX  0

' , 

i.e. 10 T  (identity transformation on plane  ); 2) At  0,00 a  (nonzero 

vector) for any point X  from point X  postpone segment 'XX , which has a 

length of vector а.  Wherein the direction of vector from point Х to point 
'Х  

coincides with the direction of vector а. Point 
'Х  is required    ': ХХТ а  . 

        Vector definition.  For any point Х  let's define the point 'Х  as the 

only solution of the vector equation relative 'Х  (vector expression of parallel 

transfer):  аХаХХ ,,'  . Then we put:   ': ХХТ а  . 

 Affine definition.  If  O - some fixed point in space, then the vector 

expression can be written as affine expression of parallel transfer:     

   ХаХХТа ,: ' .  So, with this formula we find the coordinates of 

vector 'Х  and then the point Х ' and put:  Та(Х) :=Х ' . 

     Coordinate definition. Let on the plane   we have  system of linear 

coordinates. If as the origin of the coordinate system we choose 0РО  , then 

from affine definition we receive the coordinate definition of  parallel transfer: 
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   










22

'

2

11

'

1
:

axx

axx
Ta   , 

where     2121 ,, xxandaa  - the coordinates of vector а and point Х in our 

system of linear coordinates. I.e., with the last expression we find the 

coordinates  2
'

1
' , xx  of point 'X  and put:    ': XXTa  . 

 The set of transformations     aTShifts a  ::  forms a commutative 

group of parallel transfers relative composition  . Wherein: 1) There is a law of 

multiplication baTTT baab ,, ; 2) The unit of group is the element 10 T ;  3)  

Inverse to  element 
aT  is the element aT . 

2.  Rotation 

 Rotation 


:
)(

AR  on the plane   around the point A  by the angle 

R  (radian). 

         Geometric definition 1) At Х=А (the center of rotation) we put: 

   XXRX A  '   (i.e.   
ARFixA  ); 2) At AX   for any point  X  from 

the point  А postpone segment  'AX , which has a length of the segment 

 AXAXAX '  and the angle between the segments AX  і 'AX  (taking into 

account the direction of rotation) is equal     ', AXAX . The point  'X  is 

required. So, we put:     ': XXR A     ': XXRA   

     3. Axial homotetia 

 The homotetia )0(:)(  kH k

l   on the plane   relative to the line l  

can be defined in different ways. 

          Geometric definition. 1) At lX   (axis of symmetry) let’s put: 

   XXH k

l  ;    2) At lX   we draw the line through the point X . This line 

'

Xl , which is perpendicular to the line  lllXl XX  '' , . Let llA A  '' - 

point of intersection of lines .' illX  On the line '

Xl  from point 'A  (at k <0 -  in the 

opposite direction from point Х; at k >0 - on the same side as the point X ) we 
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postpone segment '' XA , which  length is equal to the length of the segment XA' , 

which multiplied by  number  XAkXAk '''0  . 

    Vector definition. For any point  X  let’s define the point lA' , for 

which the vector XA'  has the smallest length: XAXA lA min'  

(corresponding segment is perpendicular to the line l . It is clear that point 'A  

depends on the line l  and the point Х. Let's define the point 'Х  as the only 

solution of the vector equation relative 'Х :   XAXAkXA ,'''  (vector 

expression of the axial homotetia). Thus, first of all we find the point 'A  (as a 

basis of the  perpendicular 'XA  on the line  l ), from  vector expression of the 

axial  homotetia, we find the vector '' XA  and then – the point 'X . Then we put: 

   ': XXH k

l  . Wherein, if X , then 'X . 

            Affine definition.  Let  O - any point in space and the point 'A  is found as 

in vector expression of the axial homotetia. Then, at first, vector expression of 

the axial homotetia  can be written as an affine expression of  the axial  

homotecia:       XAkXkXH k

l '1': . So, from the affine expression of  

the axial  homotecia we find the vector 'X , and then the point ':' XOX   and 

put: 
   ': XXH k

l  . Wherein, if XA, , then 'X . 

         Coordinate definition. Let on the plane   we have  system of linear 

coordinates (х - coordinates).  If the point 0AO  , then from the affine 

expression of the axial homotetia we can obtain the coordinate expression  k

lH . 

But here we have some uncertainty: we don't know the dependence of the point 

 '

21,' xxA  upon the coordinates of  point  21, xxX . But here we have some 

uncertainty: we don’t know the dependence on the point  '

21,' xxA  upon the 

coordinates of point  21, xxX  and the coefficients of the equality of line l . From 

analytic geometry we know, that the point 'A  satisfies the condition:  if '

Xl - the 

line passing through the point Х and is perpendicular to the line l , the point 'A  

belongs to the line l . This allows you to find the coordinates of the point 'A  over 
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the coordinates  21, xx  of X and normalized equation coefficients psc ,,  of line 

l : 

           0: 21  psxcxl               Rpsc  ,sin:,cos:                        (11.1) 

(here }sin,{cos},{ aascn  - orthogonal vector normal to the line l  and a  - the 

angle of the vector normal to the axis 1OX ).  Really, let {
21 ,aa  } – unknown 

coordinates of the point A . Then the condition lA    gives the first equation to 

find the coordinates of the point A : 

                                                  021   pasac                         (11.2) 

From analytic geometry we know, that the unit vector },{: scn   is perpendicular 

to the line l , which is defined by the equation (11.1). Therefore parametric 

equation of the line xl , which is perpendicular to the axis of homotecia l  

and for which 
x

lX  , looks like: 








.

,

22

11

xts

xtc




  

Let at t :  








.

,

22

11

xsa

xca




 

 Substituting these values in (11.2), we obtain: 

 )(0)()( 2121 pxsxcpxssxcc   ,  

so  











spxsscxxpxsxcsa

cpscxxcxpxsxcca

2

2

12212

21

2

1211

)1()(

)1()(
 

 

Substituting this coordinates to the affine expression of the axial  homotetia,  we 

get the coordinate expression of the axis homotecia for normalized line 

equation: 

                            










.)1(][)1(

,)1()1(][
:)(

2

22

12

21

22

1)(

spkxkscscxkx

cpkscxkxskcx
H k

l                    (11.3) 

Thus, we find with the formulas (9) the coordinates  ( 21 , xx  ) of the point X   and 

put: XXH k

l
:)()( .  Wherein if X , then X . 
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 4.  Axial symmetry 

 Symmetry  :Sl  relatively line l  can also be defined in different 

ways. 

Geometric definition. 1) At lX   (the axis of symmetry) we put 

AA
i

S )( .   2) At lX  we hold a straight line xl  through the point A , and 

this line is perpendicular to the line l  ( l
x

l
x

lX  , ). Let llA A   - the 

point of intersection of straight lines xl   і l . On the line xl  from a point A  in the 

opposite direction from the point X  the segment XA   is postponed. Its lenth is 

equal to the lenth of segment ||)||||(|| XAXAXA  . The obtained point X   is 

required (i.e., we put XXSl
:)( ). 

Coordinate expression of the axis homotetia for the normalized line equation: 

                            










.)1(][)1(

,)1()1(][
:)(

2

22

12

21

22

1)(

spkxkscscxkx

cpkscxkxskcx
H k

l                      (11.4) 

 

                            Fixed points of transformations in the plane 

A  fixed  point of transformation is determined using the coordinate 

expression     Axx   in homogenious coordinates. It satisfies the condition 

xx    0 . So,  to find  fixed points of the transformation A, we  must find 

positive eigenvalues of the  full character  A . The corresponding eigenvectors 

(i.e., non-zero solutions of equations   xAx  )  there are the homogeneous 

coordinates of fixed points.  
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12. The compositions of affine transformations  

on the plane  

Transformations on the plane 

 By this time,  the points on the plane   were considered as fixed: for each 

fixed point X  in each  system of linear coordinates from the set )Crd(  were  

considered different coordinates of this fixed point and we studied only  

changesof  x  - coordinates on y  - coordinates: 

)R0,det,( 2

2  xy  or )(Crd)(Crdx A'A XX  , where X  - 

fixed point and A , 'A  - two alterable rappers.  But you can do the conversely:  

fix (once for all)  some system of linear coordinates with )Crd(  and consider 

the affine transformation of the plane  . 

Let on the plane   we have  system of linear coordinates (х - coordinates). 

Linear transformation P :    is the transformation, which has the coordinate 

expression of the type:   xx ' , where x , 
'x  - vector-lines of coordinates of   

corresponding points, 2

2 R,   . If we add here the condition  0det  , 

we get the definition of affine transformation. Coordinate expression of 

transformation P  can be written in such matrix  way:   xxP ':)(  (for 

ordinary coordinates). 

 There is an inclusion )Lin()Aff(   . The converse is not true. For 

example, constructing the projection in fixed point )(bB  with coordinate 

expression bxP ':)(  is the linear transformation  but it is not affine. But if the  

linear transformation has an inverse one, then it is affine transformation 

                             The concept of composition of transformations 

on the plane 

Composition of transformations  :, BA  - is the transformation 

 :C , which is defined by formula:  XXBAXC )),((:)( . The 
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composition of transformations A  and B ( order of transformations is essential) 

we will denote as AB . 

Note. The general line l  equation is not normalized, i.e.  

                                  032211  lxlxl ,   02

2

2

1  ll                                (12.1) 

When you divide (11) on 2

2

2

1 llL   obtain the normalized equation. The last 

action is equivalent to substitution },,{},,{ 321

L

l

L

l

L

l
psc   in formulas (9). 

Therefore, in the case of general line equation (11) we obtain the coordinate 

expression of the axis homotetia for general line equation:  
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





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
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
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

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12

2

2

1

21

2

2

2

2

1

31

22

2

2

1

31

12

2

2

1

2

1

1

)(

)1(1)1(

)1()1(

:)(

ll

llk
x

ll

kll
x

ll

llk
x

ll

llk
x

ll

llk
x

ll

kl
x

H k

l                        (12.2) 

Note. The general line l  equation is not normalized, i.e.  

                                    032211  lxlxl ,   02

2

2

1  ll                                (12.3) 

When you divide (11) on 2

2

2

1 llL   obtain the normalized equation. The last 

action is equivalent to substitution },,{},,{ 321

L

l

L

l

L

l
psc   in formulas:                                  
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














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

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


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


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2

2

1

32
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1

2

2
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2

2

2

1

31
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1

31

12

2

2

1

2

1

1
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)1(1)1(

)1()1(
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llk
x

ll

kll
x

ll

llk
x

ll

llk
x

ll

llk
x

ll

kl
x

H k

l                    (12.4) 

Therefore, in the case of general line equation (11) we obtain the coordinate 

expression of the axis homotetia for general line equation:  
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13. Curves of the second order:  representation by matrix and 

invariants. Reduction  of the second-order curve to the canonical 

form. Classification of second-order curves 

Curves of the second order 

            General curve of the second order on the plane π  with system of normal 

y)(x, -coordinates is geometric set of points of the plane which coordinates 

satisfy the equation:  

         0)  C   B (A 0   F2Ey  2Dx   Cy 2Bxy   Ax  y)L(x, 22222   

                                                                                                              (13.1) 

 Note. Conditions 0  C  B  A 222   is equivalent to being in (13.1)  

members of second order relative variables yx, . 

 Note. The curve of the second order often defined as the algebraic curve 

that in some affine coordinate system has the form (13.1). This definition, like 

the previous one, is correct so that the change affine coordinate system to 

another affine coordinate system by the formulas: 

         0det,

2221

1211:,

22221
'

112
a  x'
11












A

aa

aa
A

byaxay

byax
    (13.2)                                                                            

the degree and type of equation (13.1) does not change. 

 The curves of the second order are also called conic cross-sections 

because historically they were concidered as sections of conical surfaces, in fact, 

direct circular cone. For example, 

 1. Circle (or point - degenerate circle) is a cross-section of direct circular 

cone by plane that is perpendicular to the axis of the cone. 

         2. Ellipse (or point - degenerate ellipse) is a cross-section of direct circular 

cone by plane, sloped to the axis of the cone on angle over than angle between 

the cone axis   and  generatrix of cone  but less than 90 degrees. 
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        3. Parabola is a cross-section of direct circular cone by plane, which is  

parallel to some generatrix of the cone, thus generatrix not belong to this plane 

(if the generatrix of cone  belongs to the plane, we have the case of two lines 

that degenerate in a one line). Thus the angle between plane and the axis of the 

cone is equal to the angle between the axis of the cone and its generatrix. 

       4. Hyperbole (or two lines, intersecting) is a cross-section of direct circular 

cone by plane, sloped to the axis of the cone on angle less than angle between 

the cone axis   and  generatrix of cone. 

 Symmetric matrix 

                                 


















FED

ECB

DBA

jk
lL :                                        (13.3)                                                                                                      

completely determines the curve (13.1) and corresponds homogeneous quadratic 

form of the   second order relative variables  z)y,(x, . 

 
       TzyxLzyxTzyx

FED

ECB

DBA

zyx

FzEyzDxzCyBxyAxzyxL





















222222),,(

           

                  (13.4)                                                                                                                       

But the latter form defines a conical surface  0  z)y,L(x,    in space  П  with 

coordinates  },,{ zyx . So the curve (l) can be regarded as (spatial) projection on a 

plane 0z  parallel to the axis OZ (spatial) curve C, which is obtained at the 

intersection of the conical surface 0  z)y,L(x,   with plane 1z . 

The equation 

    0222222),,(  TzyxLzyxFzEyzDxzCyBxyAxzyxL

                                                                                                                (13.5) 

can be seen as a second-order curve equation in  homogeneous  coordinates  

 zyx .  Therefore, the matrix α will be called the matrix of the quadratic form 

(13.l) or matrix of curve (l) or matrix of homogeneous curve.    
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Invariants of curve of the second order 

 The invariant of second order curve (relative to  change of normal  

coordinates) is a function ),,,,,( FEDCBAf  of the coefficients FEDCBA ,,,,,  of 

equation (1) of this curve, which does not depend upon change of  the normal 

coordinates on the plane π.  

For the equation (13.1) or equation (13.5) (or matrix α) let's denote: 

         ,:,:
~

,:
CB

BA

F
FSFCASCAS        (13.6) 

 ,:;:
FD

DA

FE

EC

CA
K

FED

ECB

DBA

                        (13.7) 

 .:
~

K
FD

DA

FE

EC

CB

BA

FCA
K                       (13.8) 

Here is used the following notation: 
U

 -  is (nonalgebraic) minor of element U 

of matrix α, it is the determinant  that we get from the determinant of matrix α, 

expunging the row and column containing the element U.  

The values CAS :  and 
CB

BA
:  does not depend on changes in normal 

coordinates in equation (13.1). Specifically, this values are invariant  relatively 

to  change of  normal coordinates . 

The values 
2:,: BAC

CB

BA
CAS    and 

FEC

ECB

DBA

 :  are called  

respectively the invariants of the equation (13.1) of first, second and third order. 

The value  K
FD

DA

FE

EC
K :  is called semiinvariant of equation (13.1).  
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Reducing of curve equation to the canonical form 

The main problems of the theory of second-order curves are, 

First, the classification of these curves (in terms of matrix L) and 

secondly, the adductionof the equation of any such curve to the canonical form, 

more precisely, obtaining change of coordinates at which the curve of the 

second order equation takes the simplest (canonical) form. 

 But our main goal - is to use second-order curves in the practical output to 

the screen, and we had little formal grading curves of the second order, that is, 

the knowledge that there affine coordinate system, which has, for example, an 

ellipse. We additionally need to find how to calculate the  matrix of change of 

coordinates that performs construction curve equation to canonical form to be 

able to carry out the withdrawal of the curve in the terminal window computer. 

 Therefore, we will implement the dual approach using as a representation 

of the curve in the form of (13.1) and the presentation of the curve (13.4) using 

affine change of coordinates (ie homogeneous coordinates transformation 

matrix). In this case, we will need the following statement. 

 Statement. Let z y, x,  - homogeneous affine coordinate system on the 

plane and   ''' z ,y ,x  - other homogeneous affine coordinate system on the same 

plane. Let M -  corresponding matrix change of homogeneous  coordinates, i.e.,        

             Mzyxzyx '''  or      1'''  Mzyxzyx                     (13.9) 

 Then the curve equation (5) transformes into the equation 

      ,0'''''''''''2'''2'''''2'''''' 222 
T

zyxCzyxzFzyEzxDyCyxBxAzyxL

                                                                                                                    (13.10)                                                               

Where 

                                     1111'
  TT

MLMMLML                         (13.11) 

i.e. the matrix of curve at changing of the  affine coordinates (13.9) is calculated 

using the formula (13.11). 

1. The matrix of parallel transfer of coordinates 
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

















1

010

001

nm

M sh                 2, Rnm                                     (13.12) 

with change of coordinates  nyymxx  ;      0,0, nmпри  get 

the change  yyxx  ;  that  actually is redefinition of coordinates.  

2. The matrix of rotation around the origin 

                                             















 



100

0

0

cs

sc

M rot                                            (13.13) 

by the angle 0,(  sc
c

s
arctg і )122  sc  with change of coordinates 

 cysxysycxx  ; . This matrix is always orthogonal, that means 

that its transposed  coincides with the inverse: 1 MM T  

Parallel shift of affine coordinate system 

The formulas for change of coordinates, which we call parallel shift of affine 

coordinates on the plane  , defined as (here  yx, ) ( yx,  - coordinates of the 

point X  in the original affine coordinate system;  yx,  - coordinates of the 

same point X  in the new affine coordinate system):  

   direct change:   








nyy

mxx
 ;        



















1

010

001

nm
sh

M ;                             (13.14) 

 

    inverse change: 










nyy

mxx
;       





















1

010

001
1

nm
sh

M                           (13.15) 

At the  change of  the coordinates (13.14), curve equation (1) takes the form: 

)0222(,022222:),(  CBAFyExDyCyxBxAyxL , 

              (13.16) 

where      
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















).;(22222

),,('

2

1

),,('

2

1

,,,

nmLFEnDmCnBmnAmF

nmyLECnBnE

nmxLDBnAmD

CCBBAA

    (13.17) 

The following statement highlights the value 
F

  in the reducing of a 

general second-order curve equation to canonical form.  

 Statement. 1. At  0
F

  )
2

( BAC   there is always a change of 

coordinates (13.15) which reduces (13.1) to the form in which there are no first 

degrees  variables x   and  y  (i.e. 0 ED ).  Wherein: 

                          
F

D
m




 ,              

F

En



                                   (13.18) 

 The point  00 , yxM  with coordinates 

                                          





















F

E

F

Dnmyx ,,0,0                   (13.19)   

is the center of symmetry of the curve (in homogeneous coordinates 

   FEDyx  ::1:
0

:0 ).  Wherein the curve equation takes the form: 

                                         0
2

2
2







CyBxyAx                            (13.20) 

2. At  0
F

  (i.e. 
2

BAC  ) change of coordinates (13.15) which 

reduces (13.1) to the form in which there are no first degrees  variables x   and  

y , exists if and only if the conditions: 

           




 2,,0,0,0 BACBDAEBECD

FED              (13.21) 

This is the condition of proportionality of the first two rows of matrix  L. 

Wherein is  necessarily:  0  . 
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 Rotation of affine coordinate system 

 Let's introduce rotation around the origin {x, y} of coordinates, i.e. around 

the point {x, y} = {0,0}, as the change of {x,y}- coordinates on },{ yx - coordinates 

by the formulas ({x,y} – are the coordinates of point  Х  before rotation,  },{ yx  - 

coordinates of point X , which corresponds point Х after rotation): 

direct change:     










0,0,

1, 22

sccysxy

scsycxx
                                              (13.22) 

inverse change:   










0,0,

1, 22

scycxsy

scysxcx
                                           (13.23) 

 

Of course, the parameters c and s - are respectively cos and sin of  some angle of 

rotation  ).
2

,0(


    In this case, this rotation translates perpendicular axis x and 

y to the perpendicular axis x  and y  represents the rotation by angle (radian) 

toward the opposite direction clockwise, i.e. (13.22) and (13.23) can be written 

as: 

 direct change:       










yxy

yxx





cossin

,sincos
                                                  (13.24) 

inverse change:      










yxy

yxx





cossin

,sincos
                                                    (13.25) 

 At 0B  change of coordinates, at which the product of variables in the 

curve equation (13.1)  disappears  is determined by changing coordinates 

(13.22), where: 

 
   








 








 


d

signBCA
s

d

signBCA
c 1

2

1
,1

2

1
,               (13.26) 



 82 

Here   44 222
 SBCAd .  If we put   sin,cos  bc  (i.e. choose the 

change of coordinates in the form (13.24) ), then the angle   can be obtained by 

formula:  
  dsignBCA

B
arctg




2
 ,                  (13.27) 

or by formula  (at CA  ): 

 CA
CA

B
arctg 


 ,

2

2

1
 .    

Reduction of curve equation to the canonical form 

 Reduction of curve equation to the canonical form will be carried out in 

several steps. 

 Step 1. As has been proved, exists  a change of homogeneous coordinates, 

which combines the center of coordinates with  the center of the curve 

    1

''' ,,,, M   with matrix 

                              





















































FED

F

F

ED

M 00

00

1

010

001

1



 ,                    (13.28) 

for which the curve equation in  homogeneous coordinates takes the form: 

                                    ,02 2'2'''2' 


 


 CBA                                (13.29) 

or in ordinary coordinates: 

                                         02 2'''2' 





CyyBxAx .                                (13.30) 

 Step 2. Construct the change of homogeneous coordinate  

    2

''' ,,,, M  , i.e. matrix 2M  by the following rule: 

 1. At  0B  we put 


















100

010

001

:2M . 

          2. At 0B  we put  
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




































 








 









 








 




100

0
)(

1
2

1)(
1

2

1

0
)(

1
2

1)(
1

2

1

:2
d

signBCA

d

signBCA

d

signBCA

d

signBCA

M  ,             (13.31) 

where  4)( 222  SBBAd . 

 Thus, at the transformation of homogeneous coordinates  

M },,{},,{   with matrix  21 MMM  it will be always 0B  in the 

curve equation, i.e. we obtain the equation of the curve: 

                                     0
22

 FyCxA ,                                        (13.32) 

or in homogeneous coordinates: 

                                 0222




 


 CA .                                       (13.33) 

 In the case when 0  , 0B  the change of  coordinates  (rotation around 

the origin of coordinates with parameters c and s, which are obtained by 

formulas  (13.26), the equation (13.1) changes by formulas (13.32) or (13.33), 

where 0
_

B . Wherein, the invariants of the curve are not changed. So, in new 

coordinates 






__

, yx  we receive the previous case   
_

 і 0
_

B . 

 

 In the case when 0  always will be 0S . Really, at 0S  we have  









0

02

CA

BAC
 → 









022 BA

AC
 → 0 CBA , which is impossible. So, 0S  at 

0 . But then there are also equivalence 0


S
 ↔ 0S , 0



S
   ↔  0S , 

0


S
 ↔ 0S . 
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  14. Output  of  second-order curves on  display.  Method of 

cross-section. Iterative algorithms displaying the curves of the 

second order  

Construction of iterative scheme 

 Let's consider algorithms display the curves of the second order by the 

example of hyperbole. To implement iterative algorithm we will build the 

iterative  scheme. For this let's parametrize the curve: 

 












sin

cos

by

ax
  

where  - is parameter, angle. 

Next we need the following formulas for hyperbolic functions of sum of 

arguments: 
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Let's transform in recurrence relations: 
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That is, we have the following iterative scheme 

 
   

   
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
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
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













100

0

0

: hchhsh

hshhch

H h .         (14.1)         

Wherein  1det 22  hshhchHh ;    

 hH  - hyperbolic rotation matrix.  

 (Note, that similar matrix can be found for an ellipse: 
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





100
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hh
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           - elliptical rotation matrix.) 
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 If equation (1) of the curve of second order by change of coordinates 

    Mvuyx  1,,1,,  reduces to equation in canonical form, then the coordinates 

of vertices of the polyline which approximates  the  curve  in  yx,  - coordinates 

will be equal     Mvuyx kkkk  1,,1,, . Hence we obtain the following iterative 

scheme for the coordinates of the vertices: 

 

   
       


















MHMM

MyxMHvuMvuyx

Myx

hh

hkkhkkkkkk

1

1111

00

:

,1,,1,,1,,:1,,

,1,0,1:1,,

                              

Wherein 1detdetdetdet 1   MHMM hh , i.e. change of coordinates with matrix 

hM  preserves the area of figures. 

 Matrix hM  can be calculated prior to the cycle of calculation of sequence 

of points  kk yx , , since it does not depend on k . 

 In the case of hyperbole that is not degenerate )0,0(   matrix hM  

determines the hyperbolic transformation of   plane which is   defined by  

hyperbole, and it is the hyperbolic rotation of plane. 

                        Iterative algorithm for displaying the arc  

of hyperbole (ellipse) 

1) Entrance: 

- Taking coefficients A, B, C, D, E, F of curve equation (13.1). 

- Finding and invariants   and     (see formula (13.6) and (13.7)). Test 

conditions 0,0   (non-degenerate hyperbole). If these conditions are not 

met, then go to Exit. 

- Finding the changes of coordinates with matrix  M  that is not 

degenerate, of  size 33 ,  at which equation (13.1) is reduced to canonical form. 

      Matrix  M  can be found as the product of matrix  М1  from  formula (13.28) and 

matrix М2 from formula (13.31).  
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- Obtaining values of the initial 
n  and final  

k  angles of parameter 

)( kn   . 

- Getting of the number of sides (or vertices) 2m  of polyline by which 

we approximate the desired curve.  

- Initial installation (before arithmetic cycle): 

            - Count  0



m

h kn 
. 

- Count matrix hH  by the formula (34) (in the case of an ellipse - corresponding  

formula (13.33) ) and then the matrix MHMM hh

1 . 

- Count the coordinates      Mshchyx nn  1,,1,, 00    of the initial point 0A . 

2) - The beginning of the arithmetic cycle from 0n  to mn   (from the 

beginning of the cycle 0:n , when the current cycle 1:  nn ). Further test 

of conditions mn  , if performed, so - go to step 1, if not - go to Exit. - 

Calculation of the coordinates     hnnnn Myxyx  1,,1,, 11  of the current point 

1nA . 

     -  Display of the interval  1, nn AA  in the window. 

3) The end of the arithmetic cycle by n  (transition at the Beginning of the 

arithmetic cycle). 

4) Exit. 

Іterative algorithm for displaying parabola 

Let  0N  - natural numbers describing the number of vertices 

(approximately NK  ) approximating polyline. Let’s put: 

          














kk

kk
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Nktu

hkTt

,...,1,0,

,

2
                                    

Transform in recurrence relations: 

  hthhkThkTt kk  )1(1 , 

   )22( 222

11 huhuhhtttu kkkkkk   , 
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 hvhttv kkkk   11
, 

That is,  in the homogeneous coordinates we have the desired recurrence 

relations: 

         


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

 hnnnn Pvuvu

TTvu
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
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012

001

2 hh

hPh       -  матриця параболічного обертання.                   

Wherein 1det hP .  

We have the following iterative scheme: 

        








 hnnnn Myxyx

MTTyx

]1,,[]1,,[

,]1,,[]1,,[

11

2

00
    

where MPMM hh

1 .                         

Matrix hM  defines the parabolic transformation of the plane. As in previous 

cases, this matrix can be calculated before the main calculating cycle. 

 Thus, we obtain an iterative algorithm for displaying the arc of a parabola 

1) Entrance: 

- Taking the value  p - the parabola parameter )0( p . 

- Taking the value  0h . 

- Taking the values of coordinates 
2

00 , TyTx   of  the  initial  (start)        

point 0A . 

- Taking the number 2m , which is the number of the parties (or vertices) 

of polyline by which we approximate the desired curve. 

2) Initial installation (before arithmetic cycle): 

- Calculation of matrix hM  (similar to the case of the ellipse or hyperbola). 

3) The beginning of the arithmetic cycle from 0n  to 1 mn  (When 

entering in the cycle  0n .  In the cycle 1:  nn ).  Further test of conditions 

mn  , if performed, so - go to step 1, if not - go to Exit. 
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- Calculation of the coordinates      hnnnn Myxyx  1,,1,, 11   of the current    

point  1nA . 

- Display of the interval  1, nn AA  in the window  

- The end of the arithmetic cycle by n  (transition at the Beginning of the 

arithmetic cycle). 

4) Exit. 

Method of cross-sections 

Preliminary considerations indicate how to implement output curve of the 

second order in the shortest time and in the most rational way. But often there 

are cases when the output curve of the second order on the screen (window) 

terminal could spend a lot of time, that is, the time  performance of output curve 

is not critical. In this case, after finding the type of  curve by  invariants method, 

for displaying an ellipse, parabola or hyperbole can be used the cross-sections 

method.  

 If we know the mathematical boundaries of window  ( nx  - left, nx - right, 

ny - lower, ny - upper) and the window size yx MM   (pixels), the displaying of  

curve (1) on the screen can be made by the individual pixels. 

I. The case 0,0  CA .  

In this case, equation (1) has the general form. So we get the following 

algorithm: 

1) Calculate step  xлn Mxxx /)(  . 

2)  The beginning of the first arithmetic cycle from 0j  tо 1 xMj . 

3) Calculate the value xjxx лj  )1( . 

4) Consider the equation (1), as equation relatively y   if  jxx   (cross-

section parallel to axis y ), i.e. the equation 02)(2 22  FDxAxyEBxCy jjj  

and find the discriminant )2)()( 22 FDxAxCEBxD jj  . 
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5) At 0D  calculate 1y  and 2y  by the formulas for the roots of quadratic 

equation: 

 
C

DEBx
y

j 


)(
1 ,       

C

DEBx
y

j 


)(
2  

and carry out displaying to the screen of pixels with coordinates },{ 1yx j  and 

},{ 2yx j . 

6) The end of the first arithmetic cycle. 

7) Calculate step yнв Myyy /)(  . 

8) The beginning of the second arithmetic cycle from 1j  tо 1 yMj  

9) Calculate values yjyy нj  )1( . 

10) Consider the equation (1), as equation relatively x  if jyy   (cross-

section parallel to axis x ), i.e. the equation 02)(2 22  FEyCyxDByAx jjj  

and find the discriminant )2()( 22 FExCyADByD jjj  . 

11) At 0D  calculate 1x  and 2x  by the formulas for the roots of quadratic 

equation: 

 
A

DDBy
x

j 


)(
1 ,    

A

DDBy
x

j 


)(
2  

 

12) The end of the second arithmetic cycle. 

13) The end of the algorithm. 

 II. The case  0,0  CA .  

 In this case the equation (1) takes the form 02)(2 2  FEyCyxDBy . 

So we get the following algorithm: 

1) Calculate step  унв Муyy /)(  . 

2) The beginning of the first arithmetic cycle from 0j  tо 1 yMj  

3) Calculate values yjyy нj  )1(  
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4) At 0 DBy j  calculate 
)(2

22

DBy

FEyCy
x

j

jj




   and carry out displaying to the 

screen of pixels with coordinates },{ jyx  

5) The end of the first arithmetic cycle. 

6) Calculate step xлп Mххx /)(   

7) The beginning of the second arithmetic cycle from 0j  tо 1 xMj  

8) Calculate values xjхx лj  )1(  

9) Consider the equation (1), as equation relatively y   if  jxx   (cross-section 

parallel to axis y ), тобто рівняння 02)(22  FDxyEBxCy jj  і знаходимо 

дискримінант )2()( 2 FDxCEBxD jj  . i.e. the equation 

02)(2 22  FDxAxyEBxCy jjj  and find the discriminant 

)2)()( 22 FDxAxCEBxD jj  . 

10) At 0D  calculate 1y  and 2y  by the formulas for the roots of quadratic 

equation: 

 
C

DEBx
y

j 


)(
1 ,       

C

DEBx
y

j 


)(
2  

and carry out displaying to the screen of pixels with coordinates },{ 1yx j  and 

},{ 2yx j . 

11) The end of the first arithmetic cycle. 

12) Calculate step yнв Myyy /)(  . 

13) The beginning of the second arithmetic cycle from 1j  tо 1 yMj  

14) Calculate values yjyy нj  )1( . 

15) Consider the equation (1), as equation relatively x  if jyy   (cross-

section parallel to axis x ), i.e. the equation 02)(2 22  FEyCyxDByAx jjj  

and find the discriminant )2()( 22 FExCyADByD jjj  . 
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16) At 0D  calculate 1x  and 2x  by the formulas for the roots of quadratic 

equation: 

 
A

DDBy
x

j 


)(
1 ,    

A

DDBy
x

j 


)(
2  

 

17) The end of the second arithmetic cycle. 

18) The end of the algorithm. 

   So, in cases when the output curve of the second order on the                  

screen (window) of terminal could spend a lot of time, that is, the                     

time  performance of output curve is not critical, we carried out output the      

curve. In this case, after finding the type of  curve by  invariants method, for 

displaying an ellipse, parabola or hyperbole can be used the cross-sections 

method. 

 

         A number of important industrial and economic problems (not just             

light   industry) naturally united not so much the content as methods for               

their solution. As a result of  studying "Numerical Methods" we knew the 

application of mathematical  methods  for  solving  complex  problems using  

modern  computers. 
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PART II. PRACTICAL APPLICATION AND SOFTWARE 

1. Mathematical modelling of dispersed phase  

drop deformation in nano-filled polyner mixture melts 

Key provisions 

The purpose was to study using mathematical modeling method of the 

influence of nano-additive on dispersed phase component drop deformation 

during polymer dispersion melt flow in the entry area of forming hole. 

To study the process of drop deformation in a polymer dispersion the 

mathematical model developed on the standpoint of structural-continual 

approach was improved. The model takes into account the main provisions of 

classical fluid mechanics and changes in the structure of the dispersed phase 

during its flowing. 

It is shown that the modified mathematical model of deformation of the 

polymer dispersed phase drop adequately describes the process of 

structureformation during real nano-filled polymer compositions flowing. The 

values of  polypropylene (PP) drops deformation, calculated using the model,  

correlate the experimental results: inter-phase tension reduce leads to  drops in 

deformation increase and to the average diameter of PP microfibers reduction. 

The mathematical model of deformation of dispersed phase  polymer drop 

was improved in order to carry out for theoretical research of nano-filled 

polymer mixtures. 

Using the developed mathematical model will accelerate researches and 

reduce material and energy costs of them. 

Introduction 

One promising way modification of polymers and their blends are 

creating nanocomposites, in which a set of desired properties is achieved 

through the optimal combination of components. The use of fillers of different 

sizes, shapes and chemical nature allows to improve mechanical properties of 
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materials and provide them with new functional characteristics 

(incombustibility, bactericidal, conductivity, sorption capacity, etc.). Herewith 

essential is the ability of nanoparticles (NP) surface  be getting wet by polymer 

and the nature and degree of interaction between the NP and macromolecules 

polymer on the interphase [1,2]. It is shown that the introduction of silica 

nanoparticles in a mixture melt of polypropylene / copoliamide (PP / SPA) 

allows to adjust the processes of structureformation of PP in the SPA matrix and 

thus improve the structure of the filter material (FM), obtained in processing of 

the said mixture. These filters combine high cleaning efficiency and 

productivity, and the presence of nanofiller in the FM structure  provides them 

bactericidal properties[2]. To create new nanomaterials and regulation of their 

properties is necessary conducting basic research and the establishment of 

appropriate laws. 

Problem 

Polymers are generally thermodynamically incompatible with each other 

in the melt, but the section on individual phases prevents high viscosity of the 

components. Shear flow contributes to the formation of different types of 

structures by the component of dispersed phase: liquid cylinders (jets), layers, 

drops, etc To describe the rheological behavior of polymer dispersion melts are 

used the  laws of classical mechanics, same  as for modeling systems such as 

suspensions and emulsions [3]. At the same time a polymer mixture is a special 

class of colloidal dispersions of the "polymer in the polymer." An important 

difference is  formation between the two its components interphase transition 

layer whose properties are very different from those of the characteristics of 

polymer melt in volume. In nano-filled polymer melts  an interphase layer 

around the nanoparticles is formed as well at the interphase filler / polymer and 

its thickness ranges (0,0004 ‚ 0,16) mm [4]. Thus, depending on the degree of 

affinity between the polymer and additive nanoparticles can be localized in the 

bulk melt or at the interface and influence the magnitude of surface tension. 
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Purpose ─ studying by the mathematical modeling of the influence of 

nano-additives on  deformation of dispersed phase component drop during  

polymer composition melt flow. 

The main material 

Study of flow patterns and structureformation in polymer dispersions 

subject of many articles and books. However, because of the complexity of such 

systems research experimental approaches outweigh theoretical. Today received 

a number of empirical regularities and mathematical models that describe with 

sufficient accuracy the behavior of such systems. In [5] from the standpoint of 

structural and continual approach developed a mathematical model that allows 

to determine the value of drop deformation depending on the volume 

concentration and  the rheological properties of the components (viscosity of the 

dispersed phase and dispersion medium, their interrelation and flexibility). The 

advantage of this model is that it takes into account the main provisions of 

continuum mechanics (integrity protection, continuity of functions, describing 

its movement and state) and the particular structure of the dispersed phase. Form 

drops - is ellipsoid of revolution, which changes size during the interaction with 

its dispersion medium  but retains volume. Deformation drops depending on the 

orientation in the flow accounted for using the tensor strain rate uniaxial tension. 

The model is a system of differential equations in dimensionless variables has 

the form: 

                       




















))sin32)((
2

(
2

3

)2sin(
4

3

0

2

3
3
4

2

021

3







qr
u

q

q

u







                  (1.1) 

where: φ, θ - angles that define the orientation of the drop in the stream; 

     u - the intensity of the current uniaxial stretching; 

     q - the value of deformation (stretching dimensionless); 
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     λ1, λ2, λ3 - values that take into account the rheological characteristics of the 

components. 

In the above equation point means complete original in time. 

 It is known that solid fillers cause  thickening thixotropic effect, which 

leads to an increase of viscosity of the polymer melt. In carrying out 

modifications of polymer mixture  melts  an additive is usually pre-injected into 

one component. In determining the value of drop deformation using model (1) 

the influence of nano-additive can be taken into account due to changes in melt 

viscosity of the dispersed phase and dispersion medium, using Einstein's 

formula for dilute suspensions: 

                                            ηЕ = η0 (1+2,5V)                                   (1.2) 

where: η0 - viscosity of the medium; V - volume concentration of suspended 

particles. 

 Experimental studies show that for compositions with a low content of 

nano-additive (0,05 ‚ 3,0) masses. %, the viscosity increases slightly within the 

error and it coincides with the effective viscosity (ηE) defined by the formula 

(1.2). Calculations made using the model showed that the concentration of nano-

additive (0,05 ‚ 3,0) masses. % virtually no effect on the amount of strain drops 

of the dispersed phase. However, this is inconsistent with research on the impact  

of nanofillers on micro and macro-rheological processes in  polymer mixture 

melt flowing. Thus, in [2] is shown that the introduction of (0,1 ‚ 3,0) masses. 

% silica in a mixture melt of polypropylene  / co-poliamide improves 

fiberization PP in SPA matrix: an average  microfibers diameter reduced and  

their uniformity of distribution by diameters increasing. The authors attribute 

this to the influence of nanoparticles on the interphase phenomena, namely with 

decreasing values of surface tension at the interphase. 

 From classic fundamental ratios that describe thermodynamic equilibrium 

in Low-molecular dispersion system it follows that the dispersion medium in a 

flow is acting on a drop dispersed phase therein  with a  force  proportional to 
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the gradient of shear velocity and medium viscosity  and besides this is a 

function of the ratio of viscosities components. A drop of polymer dispersed 

phase reacts on deformation with force [6]: 

                                        Тγ = 2 γαβ / r (1.3) 

where: γαβ - interphase tension; r - the radius of the drop. 

 At the same time, the ability to drop deformation is largely determined by 

its elasticity. In mathematical model (1.1)  resistance of drop on its deformation 

is taken into account  due to the value of the elastic modulus G, which is 

included into the relation to determine the rheological function λ1:  
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         where:  a, b, a0, b0 - ellipsoid axis in deformed and undeformed state; 

                     G, F - modulus of elasticity and volume concentration of the 

dispersed phase; 

           μ, η - viscosity of the dispersion medium and dispersed phase;                    

 





))(22(6

5
*

)32(

4
M

22'

000''

0

22 ba
abab






  

      

  
)2(2

1

24

1
*

))(22)(2(

)22(100

00

22'

00

22'

00000

00

2'

0

2'

0













aaba

aa
 

The values of  α0, β0, 0а , β0΄, αо΄΄, βо΄΄ are obtained in [3]. 

To assess the effect of the interfacial tension on the ability to deformation 

of the dispersed phase drops  in the expression for the determination of 

rheological function λ1 were made changes based on the fact that G = Tγ. With 

the balance of  the elastic power inside (G) and resistance (Tγ) equation to 

determine λ1 will look like: 
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                        (1.5)                                                        

where: a0 - ellipsoid axis, which volume is equivalent to the volume of sphere 

drop with radius r. 

 The system of differential equations (1) was solved numerically by the 

Runge-Kutta method  using specially written program in Delphi environment 

with Object Pascal language. Modified model tested for adequacy, ie the ability 

to predict the results of research in some area with the required accuracy by 

comparing the amount of strain drops obtained when using it with experimental 

data. This was used in the investigation results of about 1.0. methyl silica % 

additive (MC) on the value of interfacial tension (γαβ) and average diameter  

jets (micro) mixtures PE / spa and polypropylene / polyvinyl alcohol (PE / PVA) 

of the 30.6 / 68.4 vol. % (Table). 

Table. The dependence of the deformation of the dispersed phase drops on the 

value of interphase tension 

Mixture  γαβ, мН/м
-1

 d мкм q 

PP / SPA 2,60 4,0 125 

PP / SPA / МS 0,75 2,6 620 

PP / PVA 0,73 3,5 273 

PP / PVA / МS 0,47 1,7 531 

 

 The table shows that the values of interfacial tension obtained by using 

the theory of fracture liquid cylinder for nano-filled compositions are much 

lower compared to the initial mixture. This results in reduction of energy 

consumption in the formation of new surfaces dispersed phase, that promotes the 

dispersion and deformation of the droplets in the matrix polymer PP, PP 

microfiber average diameter lower than in the initial mixture of (1,5 ‚ 2,1) 
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times. Improved model actually describes the process of deformation of a PP 

drop in matrix: γαβ reduction in nano-filled mixtures is accompanied by 

increasing values of deformation. The results produced by the model are in good 

agreement with the experimental data on the influence of nano-filler on 

processes of structure -formation. Introduction filler reduces the average 

diameter polypropylene microfibers by reducing the surface tension at the 

interface. 

        Software that implements the described algorithm has been developed  [26, 

29, 32]. The text of the main program procedures is given in the appendix 14. 

                                           Conclusion 

 It is shown that the improvement of previously established mathematical 

model of deformation of drop  dispersed phase  polymer  in a  of polymer 

mixture melt flow in the entry area forming  hole can expand its capabilities and 

to use it to predict droplets deformation of component  dispersed phase in nano-

filled mixtures. Found that the modified model includes the effect of Nano-

additive on droplet deformation  in the terms  of interphase  tension at the 

interphase of the components. 

  

2.Planning the experiment and optimization of the content of 

nanoadition in polypropylene monothreads 

Key provisions 

              The purpose was  planning  the experiment and optimization of the 

content of the composition Polypropylene\ binary nanoaddition in order to 

obtain Polypropylene monothreads with high mechanical and antibacterial 

properties. 

            For planning the experiment the simplex-grid method has been used in 

pseudo coordinates . The optimization of the content of the nanoaddition has 

been carried out using the Harrington criterion. 
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           The influence of the nanoaddition silver\silica (Ag/SiO2) on the 

properties of the Polypropylene (PP) monothreads has been explored using the 

method of mathematical modeling and the content of composition for their 

forming has been optimized.  

           The mathematical model, that defines the interconnection between the 

content  of the mixture components and the properties of the nanofilled PP 

threads, has been created. 

          Modified monothreads formed of the optimal content of the 

PP\nanoaddition composition combine high level of strength and elasticity and 

develop antibacterial effect. 

Introduction 

Topicality of working out methods of obtaining fibers and threads with 

antibacterial effect is caused by necessity in creating some medical products to 

cure and protect medical workers and biologists. Attaching bactericidal 

properties to threads by inserting metal nanoparticles  is one of the most 

perspective.  Using binary nanocompos, where nanoparticles of biometals are 

brought in the surface of  inert sorbents, enables creating fundamentally new 

materials, that combine antibacterial and  sorption effect. Thus, nanocompo 

Ag/SiO2   is almost ten times more effective compared to original components, 

shows high prolonged antibacterial effect and is safer for peoples’ health and the 

environment [1]. 

Problem 

In modern medicine biologically active materials made from 

Polypropylene (PP) have become really meaningful, because they are 

chemically inert, resistant to microorganisms and  have high level of strength 

and elasticity. It is known that metallic ions are of  high antibacterial properties 

and at the same time they have a toxic effect on living beings. Within the 

transition to the nanostate, toxicity of metals  decreases [2].  Nanoadditions also 

have a great influence on mechanical indicators of threads. To define the 
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interconnection between the composition content and the characteristics of 

threads it is necessary to carry out a great number of  multivariate experiments. 

They are connected with time and materials’ expenditure, because the impact of 

each factor is explored apart from others, with fixed meanings of other 

parameters. One of the ways, which allows to carry out scientific researches fast 

enough and find the decisions most approximate to optimal ones with minimal 

expenditures, is the usage of mathematical methods of planning the experiment. 

Purpose of this work – planning the experiment and optimization of 

composition content Polypropylene/ binary nanoaddition in order to obtain 

Polypropylene monothreads with high mechanical and antibacterial properties. 

Main material 

Strength and elasticity are the main parameters that define  the safety of  

the surgical stitch. When planning the experiment such parameters were chosen 

as original ones:  

y1 -   strength of monothreads when   ruining, y2  - the original module of threads, 

y3   - diameter of the retardment of the microorganisms’ growth, y3  - diameter of 

the retardment of the  St. aureus microorganisms’ growth, and original ones 

were: x1, x2, x3 – approximate concentrations of PP, Ag and  SiO2  respectively. 

The simplex-grid method in pseudo coordinates is the most appropriate 

method for mixture systems optimization [3]. Simplex is the simplest 

geometrical figure, formed by the set k+1 independent points in k-dimensional 

space. Independent variables are called ‘factors’, space with coordinates x1, x2, 

x3 is called «factorial space», and the geometrical delineation of the function of 

response in factorial space is called «response surface». Correlation of the 

ingredients in systems being explored must satisfy the following condition: 

,1
1




q

i

ix where xi is
 
 approximate concentration of ingredients ( ix  0);  q  

quantity of  the ingredients (q  2). 
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As certain limits are put on the concentration of some ingredients of  

three-component mixture, the researches were carried out in the limited part of 

the factorial space. As the result the ‘cut-out ’ part was received , which was 

unsimilar to simplex, and experimental points were located in it. Having written 

the coordinates of  experimental points of the simplex grid, we received matrix 

of planning. In order to use the standard plan the part being explored was 

transformed into the new coordinate system 

(z1, z2 z3… zq) [3].            Simplex vertices were being accepted as independent 

ingredients of the mixture, so called pseudocomponents. To transit from the 

previous  coordinate system (x1, x2,...хq) to the new one (z1, z2 … zq)  the 

following matrix equation was used: X = AZ. 

It can be written in the detailed way:  
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In equation (1) elements of matrix A are the coordinates of vertices of 

transformed simplex, and  
)(u

ix  та 
)(u

iz  (i = 1, 2,…, q)  – original and new 

coordinates of  u- transformed point. Herewith such conditions are being done in 

z-coordinates: 
,1),,,2,1(,10 )()(

2
)(

1  u
q

uu
i zzzqiz 

  

where u is any point of the factorial space. 

To work out a model, which defines the interconnection between the 

content of the components and the properties of the modified monothreads, the 

incomplete cubical polynoma was used: 

          321123322331132112332211
ˆ xxxxxxxxxxxxy  

         (2.2) 

wherе   ijkiji  ,,   -  are polynomial coefficients, moreover  i  j   k = 1, 2, 3. 

To estimate numeric values of the coefficients of the equation, the plan of 

carrying out the experiments in the area of the factorial space being explored 
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was prepared (table 1), herewith z-coordinates were chosen from the standard 

plan for the model given [3], x-coordinates were counted according to the 

formula (1). 

Table 1. Simplex-grid plan 

№ of 

the 

experime

nt 

 

                                       Plan of experiment  

obtaine

d 

variable 

Plan in 

pseudocoordinates 

                   Working plan 

z1 z2 z3 x1 x2 x3 

1 1 0 0 0.9851 0.0050 0.00

99 

1y  

2 0 1 0 0.9880 0.0021 0.00

99 

2y  

3 0 0 1 0.9920 0.0040 0.00

40 

3y  

4 0,5 0,5 0 0.9866 0.0036 0.00

99 

12y  

5 0,5 0 0,5 0.9900 0.0030 0.00

70 

13y  

6 0 0,5 0,5 0.9886 0.0045 0.00

70 

23y  

7 0,33

3 

0,33

3 

0,33

3 

0.9785 0.0037 0.00

79 

123y  

To define the influence of correlation PP/ Ag/SiO2   the mixture on the 

mechanical and antibacterial properties of monothreads according to the plan a 

series of experiments was carried out and original and obtained parameters were 

defined (table 2). 

 

Table 2. Influence of the concentration Ag/SiO2       on the properties of PP 

monothreads 

Original 

variable 

Number of the experiment 

1 2 3 4 5 6 7 

y1
 

480 540 590 510 530 570 540 

y2 6200 780

0 

7900 6500 6900 8000 7700 

y3 14.1 8,5 13.8 13.5 9,5 13.3 11.4 
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On the basis of the data mentioned in table 2 polynomial coefficients (2) 

have been counted using the method of the least squares in the matrix form. The 

countings have been done using the specially created programme in the Delphi 

programming environment on the Object Pascal language. As the result, the 

system of the equations has been received (3). It  is a mathematical model, that 

describes the process being explored in z-coordinates. 















3213231213213

3213231213212

3213231213211

zzz 18,33 -z8,6z zz 17,8 zz 8,8 z 13,88,5z14,1zy

    zz17036,16z z600zzz 599,99 - zz 2000 -z 7899,99z 7800z 6200y

zzz 104,80 zz 20,00  zz 19,99 zz 0z 590z 539,99z 479,99y

            (2.3) 

Having defined the coefficients, the mathematical model was being 

checked in adequacy, which means ability to predict the results of the research 

in some area with necessary exactness. For this, additional experiments were 

being put in so called control points, the value of the Student criterion was being 

counted and compared with the table data. Received values of the criterion 

mentioned are the evidence of the adequacy of this model. 

To solve the problem of optimization the so called  generalized function  

of  advisability (D) was used. Harrington offered to use it as the generalized 

criterion of optimization [4].  To count value D state values of responses were 

transformed into the non-dimensional scale of advisability for each original 

parameter using exponential dependency. The generalized criterion of D 

optimization was being counted as the geometric mean of partial functions of 

advisability. The value of the Harrington criterion is limited within the interval 

[0...1] (0 stands for absolutely unacceptable value of the response given, 1 

stands for the most optimal value of the response).  

Software that implements the described algorithm has been developed  

[26, 29, 32]. The text of the main program procedures is given in the appendix 

13. 

  Optimal content of the mixture being explored was being defined using 

the method of scanning by step 0,01 in z-coordinates. According to the matrix 
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equation (1) the content of original components was transformed into the x- 

system. While the criterion of advisability D=0.8256 the determined optimal 

correlation of mixture components for monothreads formation is mas%: PP  – 

99,16; Ag – 0,38; SiO2 – 0,46, and indicators that characterize the quality of 

modified threads, are as following: comparative strength of monothreads when   

ruining – 587 MPa, original module – 7944 MPa, diameter of area of St.aureus 

bacteria growth retardment – 14,0 mm. 

Laboratorial patterns of monothreads have been worked out from the 

composition of optimal content and their properties have been explored. It has 

been found out, that stitch threads have an antibacterial effect; they also have 

good operating characteristics and fix  the surgical knot in a proper way  due to 

high strength and elasticity. 

                                             Conclusions  

Planning the experiment concerning the influence of the binary 

nanoaddition silver\silica on the properties of the Polypropylene monothreads 

has been carried out using the method of mathematical modeling. The content of  

Ag/SiO2   in the PP fusion has been optimized and biologically active 

monothreads with maximal mechanical characteristics have been formed. 
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Annex  1 

 

The procedure for calculating the determinant of a matrix of arbitrary order 

 
procedure PrDetN(KoefN:Matr;n:integer; var DetN:Real); 

var Koef:Matr; 

    i,j:integer; 

    Det,Det3:real; 

begin 

if n=3 then begin 

             Det3:=KoefN[1,1]*KoefN[2,2]*KoefN[3,3]+ 

                   KoefN[2,1]*KoefN[3,2]*KoefN[1,3]+ 

                   KoefN[1,2]*KoefN[2,3]*KoefN[3,1]- 

                   KoefN[1,3]*KoefN[2,2]*KoefN[3,1]- 

                   KoefN[2,1]*KoefN[1,2]*KoefN[3,3]- 

                   KoefN[1,1]*KoefN[2,3]*KoefN[3,2]; 

             DetN:=Det3; 

            end 

        else 

begin 

Det:=KoefN[1,1]; 

    for i:=2 to n do 

      begin 

        for j:=2 to n do 

          begin 

            Koef[i-1,j-1]:= 

              (KoefN[1,1]*KoefN[i,j]-KoefN[i,1]*KoefN[1,j])/KoefN[1,1]; 

          end; 

      end; 

      for i:=1 to n-1 do 

      begin 

        for j:=1 to n-1 do 

          begin 

            KoefN[i,j]:=Koef[i,j]; 

          end; 

      end; 

PrDetN(KoefN,n-1,DetN); 

DetN:=DetN*Det; 

end; 

end; 
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Annex 2 

 

The procedure for solving the system of linear equations by the Cramer method 
 

procedure Kramer(A:matr;b:vector;n:integer;var x:vector); 

var i,j:integer; 

    DetAo,DetAd:real; 

    temp:vector; 

begin 

PrDetN(A,n,DetAo);   // annex 1 

if DetAo=0 then ShowMessage('Kramer metod can not be used') 

          else 

            begin 

             for j:=1 to n do 

              begin 

               for i:=1 to n do 

                begin 

                 temp[i]:=A[i,j]; 

                 A[i,j]:=b[i]; 

                end; 

                PrDetN(A,n,DetAd);            // annex 1 

                x[j]:=DetAd/DetAo; 

                for i:=1 to n do 

                begin 

                 A[i,j]:=temp[i]; 

                end; 

               end; 

            end; 

end; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 111 

Annex 3 

 

Procedure that implements the Gaussian method 

 
procedure pram_hid(var A:mas); 

var 

i,j,z,rad,c:integer; 

max,temp:real; 

x:odnomir; 

begin 

for i:=1 to n do begin //schotchik stovbchikiv 

//perestavlayem yakscho diagonalniy element =0 

if A[i,i]=0 then begin 

  for j:=i to n do 

    if (A[j,i]<>0) then begin 

     rad:=j; break; end; 

                 //perestavlayem radki 

    for z:=i to n+1 do begin 

        temp:=A[i,z]; A[i,z]:=A[rad,z]; 

        a[rad,z]:=temp; 

        end; 

//delim  radok z diagonalnim elementom 

temp:=A[i,i]; 

for j:=i to n+1 do    begin 

 A[i,j]:=A[i,j]/temp; 

 end; 

        if  i<=n then 

       for j:=i+1 to n do    BEGIN TEMP:=-a[J,I]; 

         for z:=i to n+1 do 

         A[j,z]:=(TEMP*A[I,Z])+A[J,z]; 

            end; 

             end; 

end; 

 

procedure zvor_hid(var A:mas); 

var 

i,j,z,rad,c:integer; 

max,temp:real; 

x:odnomir; 

begin 

for i:=n downto 1 do begin 

      if  i>=1 then 

       for j:=i-1 downto 1 do    BEGIN TEMP:=-a[J,I]; 

          for z:=n+1 downto i do 

         A[j,z]:=(TEMP*A[I,Z])+A[J,z]; 

             end; 

end; 

end; 
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 Annex 4 

 

The procedure for solving a system of linear equations (in normal form) by 

simple iterations 

 
procedure Iter(A:matr;S1:vector;X0:vector;n:integer;eps:real;var X1:vector); 

var Xk,Xk_p1:vector; 

    t,t0:real; 

    i,j,k,k_iter:integer; 

begin 

t0:=0; 

k_iter:=round(ln(eps*(1-norma)/norma_v)/ln(norma))+1; 

   for i:=1 to n do 

     begin 

      Xk[i]:=X0[i]; 

     end; 

 for k:=1 to k_iter do 

  begin 

     for i:=1 to n do 

      begin 

        Xk_p1[i]:=S1[i]; 

        for j:=1 to n do 

         begin 

          Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk[j]; 

          end; 

         t:=abs(Xk_p1[i]-Xk[i]); 

         if t>t0 then t0:=t; 

         Xk[i]:=Xk_p1[i]; 

      end; 

    for i:=1 to n do 

     begin 

      X1[i]:=Xk_p1[i]; 

     end; 

  end; 

end; 
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Annex 5 

 

The procedure for solving a system of linear equations (in normal form) by the 

Seidel method 
 

procedure Zeidel(A:matr;S1:vector;X0:vector;n:integer;eps:real;var X1:vector); 

var Xk,Xk_p1:vector; 

    t,t0,delta:real; 

    i,j,k,k_iter:integer; 

begin  {proc} 

   for i:=1 to n do 

     begin 

      Xk[i]:=X0[i]; 

     end; 

      delta:=eps*(1-1/norma); 

repeat 

     for i:=1 to n do 

      begin 

        Xk_p1[i]:=S1[i]; 

        for j:=1 to n do 

         begin 

          if i>j then Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk_p1[j] 

                 else Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk[j]; 

         end; 

         t:=abs(Xk_p1[i]-Xk[i]); 

         Xk[i]:=Xk_p1[i]; 

      end; 

until t>delta; 

   for i:=1 to n do 

     begin 

      X1[i]:=Xk_p1[i]; 

     end; 

 

end; 
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Annex 6 

 

Auxiliary procedures for the implementation of methods for refining the roots of 

transcendental equations 

 
procedure znaki_f(a,b:real; var flag:boolean);  

var x1:real; 

begin 

 flag:=true; 

 x1:=f(a)*f(b); 

 if x1>0 then begin 

                showMessage('Function doesnt change signum. Choose other interval!'); 

                flag:=false; 

              end; 

end; 

 

procedure znak_f_(a,b:real; var flag1:boolean); 

var x1,x2,f_x1,f_x2,h,pr:real; 

begin 

 flag1:=true; 

 h:=0.00001; 

 x1:=a; 

 f_x1:=f_(x1); 

 while x1<=b do 

  begin 

   x2:=x1+h; 

   f_x2:=f_(x2); 

   pr:=f_x1*f_x2; 

   if pr<0 then begin 

                showMessage('First proizv. changes signum. Choose other interval!'); 

                flag:=false; 

              end; 

    x1:=x2; 

   end; 

end; 

 

procedure min_f_(a,b,h:real; var m1:real); var x1,x2,f_x1,f_x2:real; 

begin 

  x1:=a; 

  f_x1:=abs(f_(x1)); 

  m1:=f_x1; 

  while x1<=b do 

   begin 

    x2:=x1+h; 

    f_x2:=abs(f_(x2)); 

    if f_x2<m1 then m1:=f_x2; 

    x1:=x2; 

    end; 

end; 
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procedure max_f__(a,b:real; var M2:real);  

var x1,x2,f__x1,f__x2,h:real; 

begin 

  h:=0.00001; 

  x1:=a; 

  f__x1:=abs(f__(x1)); 

  M2:=f__x1; 

  while x1<=b do 

   begin 

    x2:=x1+h; 

    f__x2:=abs(f__(x2)); 

    if f__x2>M2 then M2:=f__x2; 

    x1:=x2; 

    end; 

end; 
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Annex 7 

 

The procedure that implements the clarification of the root of the transcendental 

equation by the method of half division 
 

procedure M_Dihot(a,b:real; var koren:real); 

var c, fa, fb, fc: real; 

    i:integer; 

begin 

if abs(b-a)<eps then begin c:=(a+b)/2; 

                           koren:=c;end 

                else 

 begin 

  c:=(a+b)/2; 

 fc:=f(c); 

 fa:=f(a); 

 fb:=f(b); 

 if fc=0 then koren:=c 

         else 

           begin 

           

             if fa*fc<0 then begin a:=a; b:=c; end else begin a:=c; b:=b; end; 

             M_Dihot(a,b,c); 

           end; 

end; 

end; 
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Annex 8 

 

The procedure that implements the refinement of the root of the transcendental 

equation by the method of tangents 
 

procedure M_Dot(a,b,eps:real;var x:real); 

var xk,xk1,razn,delta:real; 

    i:integer; 

begin 

 i:=1; 

 min_f_(a,b,0.0001,m1); // Виклик процедури, описаної в додатку 6 

 max_f__(a,b,M2); // Виклик процедури, описаної в додатку 6 

 if f(a)*f__(a)>0 then xk:=a else xk:=b; 

 delta:=power((eps*m1/M2),(1/2)); 

 repeat 

  xk1:=xk-f(xk)/f_(xk); 

  razn:=abs(xk1-xk); 

   xk:=xk1; 

   i:=i+1; 

  until(razn<delta); 

 x:=xk; 

end; 
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The procedure for finding the compression ratio 

 
procedure k_szhatia(a,b:real;var q:real; var flag:boolean); 

var x1,x2, 

    f_1,f_2:real; 

begin 

 flag:=true; 

 f_1:=abs(fi_(x1)); 

 q:=abs(fi_(x1)); 

 if f_1>1 then flag:=false; 

  while x1<=b do 

   begin 

    x2:=x1+0.00001; 

    f_2:=abs(fi_(x2)); 

    if f_2>1 then flag:=false 

             else if f_2>q then q:=f_2; 

    x1:=x2; 

    end; 

end; 
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Annex 9 

 

The procedure that implements the refinement of the root of the transcendental 

equation by the method of iterations 

 
procedure ur_iter(x0,eps:real;var x:real); 

var xn,xn1,razn:real; 

begin 

 k_szhatia(a,b,q,flag); 

 if flag=false then showMessage('Method can not be used!') 

               else 

                begin 

                  xn:=x0; 

                  delta:=eps*(1/q-1); 

                  repeat 

                   xn1:=fi(xn); 

                   razn:=abs(xn1-xn); 

                   vivid_iter(xn,xn1,razn); 

                   xn:=xn1; 

                  until razn<delta; 

  x:=xn1; 

                end; 

end; 
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Annex 10 

A procedure that clarifies the roots of a system of two nonlinear equations by 

Newton's method 
 

procedure Sys2_Newton(x0,y0,eps:real;var x,y:real); 

var deltax, deltay, delta:real; 

begin 

 repeat 

  A[1,1]:=f1_x(x0,y0); 

  A[1,2]:=f1_y(x0,y0); 

  A[2,1]:=f2_x(x0,y0); 

  A[2,2]:=f2_y(x0,y0); 

  

 b[1]:=-f1(x0,y0); 

  b[2]:=-f2(x0,y0); 

  

Kramer(A,b,2,x1);// annex 2 

  deltax:=x1[1]; 

  deltay:=x1[2]; 

 

  x:=x0+deltax; 

  y:=y0+deltay; 

 

  x0:=x; 

  y0:=y; 

 

  if abs(deltax)>abs(deltay) then delta:=abs(deltax) else delta:=abs(deltay); 

 

  until (delta<eps); 

 

  end; 
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Annex 11 

 

A procedure that implements the solution of a system of two differential 

equations by the Runge-Kutta method 
 

procedure M_Runge_Kutta(CurrT,CurrTeta,CurrQ,h:real;Var Yk1,Zk1:real); 

var k1,k2,k3,k4, 

    m1,m2,m3,m4, 

    FQ,FTeta:real; 

begin 

if CurrQ>0 then begin 

 FuncQ(CurrT,CurrTeta,CurrQ,FQ); 

 FuncTeta(CurrT,CurrTeta,CurrQ,FTeta); 

 k1:=FTeta*h; 

 m1:=FQ*h; 

 

 FuncQ(CurrT+h/2,CurrTeta+k1/2,CurrQ+m1/2,FQ); 

 FuncTeta(CurrT+h/2,CurrTeta+k1/2,CurrQ+m1/2,FTeta); 

 k2:=FTeta*h; 

 m2:=FQ*h; 

 

 FuncQ(CurrT+h/2,CurrTeta+k2/2,CurrQ+m2/2,FQ); 

 FuncTeta(CurrT+h/2,CurrTeta+k2/2,CurrQ+m2/2,FTeta); 

 k3:=FTeta*h; 

 m3:=FQ*h; 

 

 FuncQ(CurrT+h,CurrTeta+k3,CurrQ+m3,FQ); 

 FuncTeta(CurrT+h,CurrTeta+k3,CurrQ+m3,FTeta); 

 k4:=FTeta*h; 

 m4:=FQ*h; 

 

 Yk1:=CurrTeta+(1/6)*(k1+2*k2+2*k3+k4); 

 Zk1:=CurrQ+(1/6)*(m1+2*m2+2*m3+m4); 

  end 

end; 
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Annex 12 

 

Procedures for calculating the  Lagrange polynomial 

 
procedure znamen; 

var k,i:integer; 

begin 

for k:=0 to z-1 do begin 

 znam[k]:=1; 

 for i:=0 to z-1 do begin 

   if k<>i then begin znam[k]:=znam[k]*(t[k]-t[i]);    end; 

end; 

 end;end; 

 

 

Procedure l(dx:real; var xc,yc:real); 

var k,i:integer; 

begin 

xc:=0; yc:=0; 

for k:=0 to z-1 do begin 

for i:=0 to z-1 do 

if i<>k then   begin 

         c[k]:=c[k]*(dx-t[i]); 

         end; 

         xc:=xc+(x[k]*(c[k]/znam[k])); 

         yc:=yc+(y[k]*(c[k]/znam[k])); 

        end; 

end; 

 
procedure paint1(mas:real); 

var g:real; 

begin 

znamen; 

g:=-10; 

repeat 

  l(g,хс,ус); 

  form1.image1.Canvas.Pixels[round((mas*xc)+(w/2)),round((mas*-yc)+(h/2))]:=clred; 

  g:=g+0.001; 

until g>10; 

end; 
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Annex 13 

Basic procedures and functions for calculation and graphical display of 

rheological characteristics of polymer blends 
 

procedure TForm1.Button2Click(Sender: TObject); 

var i:integer; 

    q:string; 

begin 

for i:=0 to 10 do 

   begin 

     SdTcp[i]:=S[i]/Tcp[i]/1000; 

     LgSdTcp[i]:=ln(SdTcp[i])/ln(10); 

     Lg_D[i]:=LgK2+LgSdTcp[i]; 

   end; 

   for i:=0 to 9 do 

     begin 

       dLg_D[i]:=Lg_D[i]-Lg_D[i+1]; 

       dLgT[i]:=LgT[i]-LgT[i+1]; 

       N[i]:=dLg_D[i]/dLgT[i]; 

     end; 

  for i:=0 to 9 do 

   begin 

     LgD[i]:=ln(N[i]+3)/ln(10)+Lg_D[i]; 

     LgEta[i]:=LgT[i]-LgD[i]; 

    Eta[i]:=Power(10,LgEta[i]); 

  end; 

  Form2.Show; 

  Form5.Hide; 

    for i:=0 to 9 do 

  begin 

    Form2.Memo1.Lines.add(IntToStr(i+1)); 

    q:=format('%*.*f',[8,7,SdTcp[i]]); 

    Form2.Memo5.Lines.add(q); 

    q:=format('%*.*f',[5,4,Lg_D[i]]); 

    Form2.Memo6.Lines.add(q); 

    q:=format('%*.*f',[5,4,N[i]]); 

    Form2.Memo7.Lines.add(q); 

    q:=format('%*.*f',[2,1,Tcp[i]]); 

    Form2.Memo2.Lines.add(q); 

    q:=format('%*.*f',[2,0,S[i]]); 

    Form2.Memo3.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgT[i]]); 

    Form2.Memo4.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgD[i]]); 

    Form2.Memo8.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgEta[i]]); 

    Form2.Memo9.Lines.add(q); 

    q:=format('%*.*f',[5,1,Eta[i]]); 

    Form2.Memo10.Lines.add(q); 

  end; 
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end; 

 

 

procedure TForm1.Button3Click(Sender: TObject); 

var i:integer; 

    q:string; 

begin 

 for i:=0 to kd-1 do 

   begin 

     SdTcp[i]:=S[i]/Tcp[i]/1000; 

     LgSdTcp[i]:=ln(SdTcp[i])/ln(10); 

     Lg_D[i]:=LgK2+LgSdTcp[i]; 

   end; 

   for i:=0 to kd-2 do 

     begin 

       dLg_D[i]:=Lg_D[i]-Lg_D[i+1]; 

       dLgT[i]:=LgT[i]-LgT[i+1]; 

       N[i]:=dLg_D[i]/dLgT[i]; 

     end; 

  for i:=0 to kd-2 do 

   begin 

     LgD[i]:=ln(N[i]+3)/ln(10)+Lg_D[i]; 

     LgEta[i]:=LgT[i]-LgD[i]; 

    Eta[i]:=Power(10,LgEta[i]); 

  end; 

  Form2.Show; 

  Form5.Hide; 

      for i:=0 to kd-2 do 

  begin 

    Form2.Memo1.Lines.add(IntToStr(i+1)); 

    q:=format('%*.*f',[8,7,SdTcp[i]]); 

    Form2.Memo5.Lines.add(q); 

    q:=format('%*.*f',[5,4,Lg_D[i]]); 

    Form2.Memo6.Lines.add(q); 

    q:=format('%*.*f',[5,4,N[i]]); 

    Form2.Memo7.Lines.add(q); 

    q:=format('%*.*f',[2,1,Tcp[i]]); 

    Form2.Memo2.Lines.add(q); 

    q:=format('%*.*f',[2,0,S[i]]); 

    Form2.Memo3.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgT[i]]); 

    Form2.Memo4.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgD[i]]); 

    Form2.Memo8.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgEta[i]]); 

    Form2.Memo9.Lines.add(q); 

    q:=format('%*.*f',[5,1,Eta[i]]); 

    Form2.Memo10.Lines.add(q); 

  end; 

  for i:=0 to kd-2 do 
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   begin 

     LgD2[i]:=ln(N2[i]+3)/ln(10)+Lg_D2[i]; 

     dLgD[i]:=LgD[i]-LgD[i+1]; 

     LgEta2[i]:=LgT2[i]-LgD2[i]; 

    Eta2[i]:=Power(10,LgEta2[i]); 

  end; 

   end; 

 

procedure TForm1.Button5Click(Sender: TObject); 

begin 

 kd:=StrToInt(Edit34.Text); 

end; 

 

procedure vvod(c:STRING; var F_Tcp,F_S,F_LgT:TS ); 

var f:textfile; 

i,j:integer; 

begin 

    assignfile(f,c); 

    reset(f); 

    readln(f,kd); 

        for i:=0 to kd-1 do 

    begin 

         read(f,F_Tcp[i]); 

      read(f,F_S[i]); 

      read(f,F_LgT[i]); 

      readln(f); 

    end; 

end; 

 

procedure TForm1.Button7Click(Sender: TObject); 

var f:textfile; 

i,j:integer; 

 

begin 

   assignfile(f,'inp.txt'); 

    reset(f); 

    readln(f,kd); 

      for i:=0 to kd-1 do 

    begin 

       read(f,Tcp[i]); 

      read(f,S[i]); 

      read(f,LgT[i]); 

            readln(f); 

    end; 

closefile(f);} 

Form6.Show; 

end; 

end. 
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Unit2 

Procedure vivid(C:STRING;D:TS); 

var f1:textfile; 

i,j:integer; 

begin 

    assignfile(f1,C); 

    append(f1); 

    for i:=1 to kd-1 do 

    begin 

       write(f1,D[i]:0:4);  //write(f1,' '); 

       writeln(f1); 

    end; 

close(f1); 

end; 

 

 

procedure TForm2.Button1Click(Sender: TObject); 

var i:integer; 

    f2, f3,f4:textfile; 

     q:string; 

begin 

 kNazhatiy:=kNazhatiy+1; 

 Nr:=StrToInt(Edit21.Text); 

 Form3.Show; 

  Ncp1:=0; 

 Ncp2:=0; 

for i:=0 to Nr-1 do 

  begin 

    Ncp1:=Ncp1+N[i]; 

  end; 

 Ncp1:=Ncp1/Nr; 

 for i:=0 to Nr-1 do 

  begin 

     LgD[i]:=ln(Ncp1+3)/ln(10)+Lg_D[i]; 

     LgEta[i]:=LgT[i]-LgD[i]; 

     Eta[i]:=Power(10,LgEta[i]); 

  end; 

     for i:=0 to Nr-1 do 

  begin 

     if kNazhatiy=1 then LgEta1[i]:=LgEta[i]; 

     if kNazhatiy=2 then LgEta2[i]:=LgEta[i]; 

     if kNazhatiy=3 then LgEta3[i]:=LgEta[i]; 

  end; 

  for i:=0 to Nr-1 do 

  begin 

     LgEta123[i]:=LgEta1[i]; 

  end; 

  for i:=Nr to (Nr-1)*2 do 

  begin 

     LgEta123[i]:=LgEta2[i]; 
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  end; 

  for i:=(Nr-1)*2+1 to (Nr-1)*3 do 

  begin 

     LgEta123[i]:=LgEta3[i]; 

  end; 

 for i:=Nr to kd-1 do 

  begin 

    Ncp2:=Ncp2+N[i]; 

  end; 

 Ncp2:=Ncp2/(kd-1-Nr); 

Form3.Edit1.Text:=FloatToStr(Ncp1); 

Form3.Edit2.Text:=FloatToStr(Ncp2); 

  for i:=Nr to kd-2 do 

  begin 

     LgD[i]:=ln(Ncp2+3)/ln(10)+Lg_D[i]; 

     LgEta[i]:=LgT[i]-LgD[i]; 

    Eta[i]:=Power(10,LgEta[i]); 

    Memo1.Lines.add(FloatToStr(LgEta[i])); 

    Memo2.Lines.add(FloatToStr(Eta[i])); 

      end; 

   for i:=0 to kd-2 do 

  begin 

    Form3.Memo4.Lines.add(IntToStr(i+1)); 

    q:=format('%*.*f',[8,7,SdTcp[i]]); 

    Form3.Memo1.Lines.add(q); 

    q:=format('%*.*f',[5,4,Lg_D[i]]); 

    Form3.Memo2.Lines.add(q); 

    q:=format('%*.*f',[5,4,N[i]]); 

    Form3.Memo3.Lines.add(q); 

    q:=format('%*.*f',[2,1,Tcp[i]]); 

    Form3.Memo5.Lines.add(q); 

    q:=format('%*.*f',[2,0,S[i]]); 

    Form3.Memo6.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgT[i]]); 

    Form3.Memo7.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgD[i]]); 

    Form3.Memo8.Lines.add(q); 

    q:=format('%*.*f',[5,4,LgEta[i]]); 

    Form3.Memo9.Lines.add(q); 

    q:=format('%*.*f',[5,1,Eta[i]]); 

    Form3.Memo10.Lines.add(q); 

  end; 

  vivid ('out.txt',LgT); 

  vivid ('out2.txt',LgEta); 

 end; 

 

Unit3 

procedure Det3x3(Koef:MyArr; var Det:Real); 

begin 

  Det:=Koef[1,1]*Koef[2,2]*Koef[3,3]+ 
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       Koef[2,1]*Koef[3,2]*Koef[1,3]+ 

       Koef[1,2]*Koef[2,3]*Koef[3,1]- 

       Koef[1,3]*Koef[2,2]*Koef[3,1]- 

       Koef[2,1]*Koef[1,2]*Koef[3,3]- 

       Koef[1,1]*Koef[2,3]*Koef[3,2]; 

end; 

 

procedure MinSq(X,Y:TS; Ac,Bc,Cc:real); 

var i,j:integer; 

    S1,S2,S3,S4,S5,S6,S7:real; 

begin 

for i:=0 to 9 do 

  begin 

    S1:=S1+power(X[i],4); 

    S2:=S2+power(X[i],3); 

    S3:=S3+X[i]*X[i]; 

    S4:=S4+X[i]; 

    S5:=S5+X[i]*X[i]*Y[i]; 

    S6:=S6+X[i]*Y[i]; 

    S7:=S7+Y[i]; 

  end; 

 Koef[1,1]:=S1; 

 Koef[2,1]:=S2; 

 Koef[3,1]:=S3; 

 Koef[1,2]:=S2; 

 Koef[2,2]:=S3; 

 Koef[3,2]:=S4; 

 Koef[1,3]:=S3; 

 Koef[2,3]:=S4; 

 Koef[3,3]:=1; 

 St[1]:=S5; 

 St[2]:=S6; 

 St[3]:=S7; 

 Kramer3(Koef,St,Ac,Bc,Cc); 

end; 

 

Unit4 

procedure Scale(A,B:TS;var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real); 

var k:integer; 

    pr,pr1,Min,Min1,Max,Max1:Real; 

begin 

  Min:=A[0]; 

  Max:=A[0]; 

  Min1:=B[0]; 

  Max1:=B[0]; 

  for k:=1 to kd-2 do 

   begin 

     if A[k]>Max then Max:=A[k]; 

     if A[k]<Min then Min:=A[k]; 

     if B[k]>Max1 then Max1:=B[k]; 
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     if B[k]<Min1 then Min1:=B[k]; 

   end; 

MinA:=Min; 

MinB:=Min1; 

 pr:=Max-Min; 

 Mx:=290/pr; 

 pr1:=Max1-Min1; 

 My:=270/pr1; 

 ShA:=pr/10; 

 ShB:=pr1/10; 

 KA:=0; 

 KB:=0; 

if Min>pr then KA:=1; 

if Min1>pr1 then KB:=1; 

end; 

 

procedure OsiCoord; 

var i:integer; 

begin 

 X0:=35; 

 Y0:=300; 

Form4.Image1.Canvas.MoveTo(X0,Y0+10); 

Form4.Image1.Canvas.LineTo(X0,5); 

Form4.Image1.Canvas.MoveTo(X0-10,Y0); 

Form4.Image1.Canvas.LineTo(370,Y0); 

for i:=1 to 11 do 

 begin 

   Form4.Image1.Canvas.MoveTo(X0+10+29*(i-1),Y0-2); 

   Form4.Image1.Canvas.LineTo(X0+10+29*(i-1),Y0+2); 

   Form4.Image1.Canvas.MoveTo(X0+2,Y0-10-27*(i-1)); 

   Form4.Image1.Canvas.LineTo(X0-2,Y0-10-27*(i-1)); 

 end; 

end; 

 

procedure RazmetkaOsey(A,B:TS); 

var i:integer; 

    q,q1:string; 

    Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real; 

begin 

Scale(A,B,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

 for i:=0 to 5  do 

  begin 

   q:=format('%*.*f',[4,3,MinA]); 

   Form4.Image1.Canvas.TextOut(X0+29*2*i+2,Y0+4,q) ; 

   MinA:=MinA+2*ShA; 

  end; 

  for i:=0 to 11  do 

  begin 

   q1:=format('%*.*f',[4,3,MinB]); 

   Form4.Image1.Canvas.TextOut(X0-30,Y0-14-27*i,q1) ; 
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   MinB:=MinB+ShB; 

  end; 

end; 

 

procedure Griphic_Lg_D_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real; 

    i:integer; 

begin 

RazmetkaOsey(LgT,Lg_D); 

Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

Form4.Image1.Canvas.MoveTo 

     (X0+round(LgT[0]*Mx-KA*MinA{4.9}*Mx+10), 

     Y0-(round(Lg_D[0]*My-{KB*}{0.3}MinB*My{177.8}))-10); 

for i:=1 to kd-2 do 

 begin 

  Form4.Image1.Canvas.LineTo 

     (X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx+10{4.6*MSx{181.8-4.6*181.8}), 

      Y0-(round(Lg_D[i]*My-{KB*}MinB{0.3}*My{177.8}))-10); 

 end; 

for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10, 

      Y0-round(Lg_D[i]*My-{KB*}{0.3}MinB*My)-2-10, 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10, 

      Y0-round(Lg_D[i]*My-{KB*}MinB{0.3}*My)+2-10 

                               ); 

 end; 

 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure Griphic_LgEta_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real; 

    i:integer; 

begin 

RazmetkaOsey(LgT,LgEta); 

Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

Form4.Image1.Canvas.MoveTo( 

             X0+round(LgT[0]*Mx-KA*MinA*Mx)+10, 

             Y0-round(LgEta[0]*My-{KB*}MinB*My)-10 

                             ); 

for i:=1 to kd-2 do 

 begin 

  Form4.Image1.Canvas.LineTo 

     (X0+round(LgT[i]*Mx-KA*MinA*Mx)+10, 

      Y0-round(LgEta[i]*My-{KB*}MinB*My)-10); 

 end; 

 for i:=0 to kd-2 do 



 131 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10, 

      Y0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-2-10, 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10, 

      Y0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+2-10 

                                 ); 

 end; 

 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure Griphic_Eta_T; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real ; 

    i:integer; 

    T:TS; 

begin 

for i:=0 to kd-2 do 

 begin 

  T[i]:=power(10,LgT[i]); 

 end; 

RazmetkaOsey(T,Eta); 

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

Form4.Image1.Canvas.MoveTo 

     (X0+round(T[0]*Mx-KA*MinA*Mx)+10, 

     Y0-round(Eta[0]*My-{KB*}MinB*My{177.8})-10); 

for i:=1 to kd-2 do 

 begin 

  Form4.Image1.Canvas.LineTo 

     (X0+round(T[i]*Mx-KA*MinA*Mx)+10, 

      Y0-round(Eta[i]*My-{KB*}MinB*My)-10); 

 end; 

 

  for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)-2+10, 

      Y0-round(Eta[i]*My-{KB*}{0.3}MinB*My)-2-10, 

      X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)+2+10, 

      Y0-round(Eta[i]*My-{KB*}MinB{0.3}*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure Points_Lg_D_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real; 

    i:integer; 
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begin 

RazmetkaOsey(LgT,Lg_D); 

Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10, 

      Y0-round(Lg_D[i]*My-{KB*}{0.3}MinB*My)-2-10, 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10, 

      Y0-round(Lg_D[i]*My-{KB*}MinB{0.3}*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure Points_LgEta_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real; 

    i:integer; 

begin 

kv:=kv+1; 

if kv=1 then RazmetkaOsey(LgT,LgEta); 

if kv=3 then RazmetkaOsey(LgT,LgEta123); 

if kv=1 then Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

if kv=3 then Scale(LgT,LgEta123,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

 for i:=0 to kd-2 do 

 begin 

  if kv=1 then Form4.Image1.Canvas.Pen.Color:=clRed; 

  if kv=2 then Form4.Image1.Canvas.Pen.Color:=clGreen; 

  if kv=3 then Form4.Image1.Canvas.Pen.Color:=clBlue; 

  Form4.Image1.Canvas.Pen.width:=2; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-3+10, 

      Y0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-3-10, 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+3+10, 

      Y0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+3-10 

                                 ); 

 end; 

 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure Points_Eta_T; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real ; 

    i:integer; 

    T:TS; 

begin 

for i:=0 to kd-2 do 

 begin 

  T[i]:=power(10,LgT[i]); 
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 end; 

RazmetkaOsey(T,Eta); 

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

  for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)-2+10, 

      Y0-round(Eta[i]*My-{KB*}{0.3}MinB*My)-2-10, 

      X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)+2+10, 

      Y0-round(Eta[i]*My-{KB*}MinB{0.3}*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure Points_3_LgEta_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real; 

    i:integer; 

begin 

RazmetkaOsey(LgT,LgEta123); 

Scale(LgT,LgEta123,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

 for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Pen.width:=2; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-3+10, 

      Y0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-3-10, 

      X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+3+10, 

      Y0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+3-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

procedure TForm4.Button1Click(Sender: TObject); 

begin 

OsiCoord; 

if RadioButton1.Checked then Griphic_Lg_D_LgT; 

if RadioButton2.Checked then Griphic_LgEta_LgT; 

if RadioButton3.Checked then Griphic_Eta_T; 

//RazmetkaOsey(LgT,Lg_D); 

end; 

 

procedure Approx_LgEta_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real; 

    i:integer; 

    Ma,Mb,hA,hB, Ac,Bc,Cc:real; 

begin 
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RazmetkaOsey(LgT,LgEta); 

Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

MinSq(LgT,LgEta, Ac,Bc,Cc); 

Form4.Image1.Canvas.MoveTo(X0+10,Y0-10-round( 

                          (Ac*MinA*MinA+Bc*MinA+Cc)*My-MinB*My) 

                                              ); 

 Form4.Edit1.Text:=FloatToStr(Ac); 

 Form4.Edit2.Text:=FloatToStr(Bc); 

 Form4.Edit3.Text:=FloatToStr(Cc); 

for i:=1 to 101 do 

 begin 

   Form4.Image1.Canvas.LineTo 

     (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10, 

      Y0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+ 

                          Bc*(MinA+i*ShA/10)+Cc)*My- 

                          MinB*My)-10); 

 end; 

 for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-MinA*Mx)-2+10, 

      Y0-round(LgEta[i]*My-MinB*My)-2-10, 

      X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10, 

      Y0-round(LgEta[i]*My-MinB*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

 

procedure Approx4_LgEta_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real; 

    i:integer; 

    Ma,Mb,hA,hB, Ac4,Bc4,Cc4,Dc4:real; 

begin 

RazmetkaOsey(LgT,LgEta); 

Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

MinSq4(LgT,LgEta, Ac4,Bc4,Cc4,Dc4); 

 

Form4.Image1.Canvas.MoveTo(X0+10,Y0-10-round( 

                          (Ac4*MinA*MinA*MinA+Bc4*MinA*MinA+Cc4*MinA+Dc4)*My 

                                        -MinB*My) 

                                              ); 

 Form4.Edit1.Text:=FloatToStr(Ac4); 

 Form4.Edit2.Text:=FloatToStr(Bc4); 

 Form4.Edit3.Text:=FloatToStr(Cc4); 

for i:=1 to 101 do 

 begin 

   Form4.Image1.Canvas.LineTo 
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     (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10, 

      Y0-round((Ac4*(MinA+i*ShA/10)*(MinA+i*ShA/10)*(MinA+i*ShA/10)+ 

                Bc4*(MinA+i*ShA/10)*(MinA+i*ShA/10)+ 

                Cc4*(MinA+i*ShA/10)+Dc4)*My- 

                          MinB*My)-10); 

 end; 

 for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-MinA*Mx)-2+10, 

      Y0-round(LgEta[i]*My-MinB*My)-2-10, 

      X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10, 

      Y0-round(LgEta[i]*My-MinB*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

procedure Approx_Eta_T; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real; 

    i:integer; 

    Ma,Mb,hA,hB, Ac,Bc,Cc:real; 

    T:TS; 

begin 

for i:=0 to kd-2 do 

 begin 

  T[i]:=power(10,LgT[i]); 

 end; 

 

RazmetkaOsey(T,Eta); 

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

MinSq(T,Eta, Ac,Bc,Cc); 

Form4.Image1.Canvas.MoveTo(X0+10,Y0-10-round( 

                          (Ac*MinA*MinA+Bc*MinA+Cc)*My-MinB*My) 

                                              ); 

 Form4.Edit1.Text:=FloatToStr(Ac); 

 Form4.Edit2.Text:=FloatToStr(Bc); 

 Form4.Edit3.Text:=FloatToStr(Cc); 

for i:=1 to 101 do 

 begin 

   Form4.Image1.Canvas.LineTo 

     (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10, 

      Y0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+ 

                          Bc*(MinA+i*ShA/10)+Cc)*My- 

                          MinB*My)-10); 

 end; 

 for i:=0 to kd-2 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 
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      X0+round(T[i]*Mx-MinA*Mx)-2+10, 

      Y0-round(Eta[i]*My-MinB*My)-2-10, 

      X0+round(T[i]*Mx-KA*MinA*Mx)+2+10, 

      Y0-round(Eta[i]*My-MinB*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

 

procedure Approx_Lg_D_LgT; 

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real; 

    i:integer; 

    Ma,Mb,hA,hB, Ac,Bc,Cc:real; 

begin 

RazmetkaOsey(LgT,Lg_D); 

Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB); 

Form4.Image1.Canvas.MoveTo( 

             X0+round(LgT[0]*Mx-MinA*Mx)+10, 

             Y0-round(Lg_D[0]*My-MinB*My)-10 

                             ); 

MinSq(LgT,Lg_D, Ac,Bc,Cc); 

 Form4.Edit1.Text:=FloatToStr(Ac); 

 Form4.Edit2.Text:=FloatToStr(Bc); 

 Form4.Edit3.Text:=FloatToStr(Cc); 

for i:=1 to 99 do 

 begin 

   Form4.Image1.Canvas.LineTo 

     (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10, 

      Y0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+ 

                          Bc*(MinA+i*ShA/10)+Cc)*My- 

                          MinB*My)-10); 

 end; 

 for i:=0 to 9 do 

 begin 

  Form4.Image1.Canvas.Pen.Color:=clRed; 

  Form4.Image1.Canvas.Ellipse( 

      X0+round(LgT[i]*Mx-MinA*Mx)-2+10, 

      Y0-round(Lg_D[i]*My-MinB*My)-2-10, 

      X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10, 

      Y0-round(Lg_D[i]*My-MinB*My)+2-10 

                                 ); 

 end; 

   Form4.Image1.Canvas.Pen.Color:=clBlack; 

end; 

 

Unit6 

procedure TForm6.FormCreate(Sender: TObject); 

begin 

x0:=-1000; 
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y0:=2200; 

Mx:=300; 

My:=300; 

kn:=0; 

end; 

 

function xk(xmat:real):integer; 

begin 

 xk:=trunc(x0+xmat*Mx); 

end; 

 

function yk(ymat:real):integer; 

begin 

 yk:=trunc(y0-ymat*My); 

end; 

 

procedure osi; 

var i:integer; 

 begin 

  Form6.Image1.Canvas.Pen.Width:=1; 

  //ShowMessage("0"); 

  Form6.Image1.Canvas.Pen.Color:=clWhite; 

  Form6.Image1.Canvas.Rectangle(0,0,Form6.Image1.Width,Form6.Image1.Height); 

  Form6.Image1.Canvas.Pen.Color:=clMoneyGreen; 

    for i:=0 to 100 do 

  begin 

   Form6.Image1.Canvas.MoveTo(5,y0+i*My); 

   Form6.Image1.Canvas.LineTo(Form6.Image1.Width-5,y0+i*My); 

   Form6.Image1.Canvas.MoveTo(5,y0-i*My); 

   Form6.Image1.Canvas.LineTo(Form6.Image1.Width-5,y0-i*My); 

   Form6.Image1.Canvas.MoveTo(x0+i*Mx,5); 

   Form6.Image1.Canvas.LineTo(x0+i*Mx,Form6.Image1.Height); 

   Form6.Image1.Canvas.MoveTo(x0-i*Mx,5); 

   Form6.Image1.Canvas.LineTo(x0-i*Mx,Form6.Image1.Height); 

  end; 

  Form6.Image1.Canvas.Pen.Color:=clBlack; 

  Form6.Image1.Canvas.MoveTo(5,y0); 

  Form6.Image1.Canvas.LineTo(Form6.Image1.Width-5,y0); 

  Form6.Image1.Canvas.MoveTo(x0,5); 

  Form6.Image1.Canvas.LineTo(x0,Form6.Image1.Height); 

 end; 

 

procedure vvod(c:STRING; var F_Tcp,F_S,F_LgT:TS ); 

var f:textfile; 

i,j:integer; 

begin 

        assignfile(f,c); 

    reset(f); 

    readln(f,kd); 

    //ShowMessage(IntToStr(kd)); 
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    for i:=0 to kd-1 do 

    begin 

     for j:=1 to kd do 

      read(f,F_Tcp[i]); 

      read(f,F_S[i]); 

      read(f,F_LgT[i]); 

      readln(f); 

    end; 

end; 

 

procedure TForm6.Button1Click(Sender: TObject); 

var i:integer; 

    f:textfile; 

begin 

assignfile(f,'outinp.txt'); 

    reset(f); 

      kd:=11; 

       for i:=0 to kd-3 do 

    begin 

    for j:=1 to kd do 

      readln(f,LgT[i]); 

        readln(f); 

      end; 

    for i:=0 to kd-3 do 

    begin 

      read(f,LgEta1[i]); 

    readln(f); 

      end; 

      for i:=0 to kd-3 do 

    begin 

      read(f,LgEta2[i]); 

     readln(f); 

      end; 

      for i:=0 to kd-2 do 

    begin 

      read(f,LgEta3[i]); 

      readln(f); 

      end; 

kn:=kn+1; 

      osi; 

      Form6.Image1.Canvas.Pen.width:=2; 

 Form6.Image1.Canvas.Pen.Color:=clRed; 

 for i:=0 to kd-3 do 

    begin 

    Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta1[i])-

3,xk(LgT[i])+3,yk(LgEta1[i])+3); 

    end; 

    Form6.Image1.Canvas.Pen.Color:=clGreen; 

  for i:=0 to kd-3 do 

    begin 



 139 

    Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta2[i])-

3,xk(LgT[i])+3,yk(LgEta2[i])+3); 

    end; 

    Form6.Image1.Canvas.Pen.Color:=clBlue; 

  for i:=0 to kd-3 do 

    begin 

    Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta3[i])-

3,xk(LgT[i])+3,yk(LgEta3[i])+3); 

    end; 

end; 

 

procedure TForm6.ScrollBar1Scroll(Sender: TObject; ScrollCode: TScrollCode; 

  var ScrollPos: Integer); 

  var i:integer; 

begin 

  Form6.Image1.Canvas.Pen.Color:=clWhite; 

  Form6.Image1.Canvas.Rectangle(0,0,Image1.Width,Image1.Height); 

Mx:=ScrollPos; 

My:=ScrollPos; 

osi; 

for i:=0 to kd-1 do 

 begin 

   Form6.Image1.Canvas.Pen.Color:=clRed; 

  Form6.Image1.Canvas.Pen.width:=2; 

  Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta1[i])-

3,xk(LgT[i])+3,yk(LgEta1[i])+3); 

   Form6.Image1.Canvas.Pen.Color:=clGreen; 

   Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta2[i])-

3,xk(LgT[i])+3,yk(LgEta2[i])+3); 

   Form6.Image1.Canvas.Pen.Color:=clBlue; 

   Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta3[i])-

3,xk(LgT[i])+3,yk(LgEta3[i])+3); 

   end; 

end; 

end. 
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Annex 14 

 

 Basic procedures and functions for graphical display of calculation results 

by mathematical model of polymer droplet deformation in flow 
 

Unit3 

procedure TForm3.FormShow(Sender: TObject); 

Var 

      i:integer; 

      SX,SIX,SIY:Real; 

      StepX,StepY:Real; 

      OldX,OldY,NewX,NewY:integer; 

      MasX:array [0..50] of Real; 

      MasY:array [1..4,0..50] of Real; 

      BY:Real; 

      SY:Real; 

       MaxY:integer; 

      Z:integer; 

      iii:integer; 

      countL:integer; 

      index:integer; 

begin 

      for i:=1 to 50 do 

      MasX[i-1]:= strtofloat(form1.Memo1.Lines.Strings[i]); 

      for i:=1 to form1.Memo3.Lines.Count-1 do 

      begin 

            if (i<51) then MasY[1][i-1]:= strtofloat(form1.Memo3.Lines.Strings[i]); 

            if (i>=101) and (i<151) then MasY[2][i-101]:= 

strtofloat(form1.Memo3.Lines.Strings[i]); 

            if (i>=201) and(i<251) then MasY[3][i-201]:= 

strtofloat(form1.Memo3.Lines.Strings[i]); 

            if (i>=301) and (i<351) then MasY[4][i-301]:= 

strtofloat(form1.Memo3.Lines.Strings[i]); 

      end; 

      Image1.Canvas.Pen.Color:=clBlack; 

      Image1.Canvas.MoveTo(100,370); 

      Image1.Canvas.LineTo(500,370); 

      Image1.Canvas.MoveTo(100,370); 

      Image1.Canvas.LineTo(100,0); 

      Image1.Canvas.Pen.Color:=clBlack; 

      SX:=MasX[49]-MasX[0]; 

      SY:=MasY[1][49]-MasY[1][0]; 

      if SY<MasY[2][49]-MasY[2][0] then SY:=MasY[2][49]-MasY[2][0]; 

      if SY<MasY[3][49]-MasY[3][0] then SY:=MasY[3][49]-MasY[3][0]; 

      if SY<MasY[4][49]-MasY[4][0] then SY:=MasY[4][49]-MasY[4][0]; 

      index:=1; 

      while index<=CountI do 

      for index:=1 to 4 do 

      begin 

      NewX:=round(100+MasX[0]); 
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      NewY:=round(370-MasY[index][0]); 

      Image1.Canvas.Pen.Width:=2; 

      Image1.Canvas.MoveTo(NewX,NewY); 

      Image1.Canvas.Pen.Color:=clRed; 

      Image1.Canvas.LineTo(NewX,NewY); 

      Image1.Canvas.TextOut(80,NewY,floattostr(round(MasY[index][0]))); 

      Image1.Canvas.Pen.Width:=1; 

      Image1.Canvas.MoveTo(80,NewY); 

      Image1.Canvas.LineTo(100,NewY); 

      Image1.Canvas.TextOut(NewX,380,floattostr((MasX[0]))); 

      Image1.Canvas.MoveTo(NewX,370); 

      Image1.Canvas.LineTo(NewX,380); 

      Image1.Canvas.MoveTo(NewX,NewY); 

      Image1.Canvas.Pen.Color:=clBlack; 

      for i:=1 to 49 do 

      begin 

      Image1.Canvas.Pen.Width:=2; 

            SIX:=MasX[i]-MasX[i-1]; 

            SIY:=MasY[index][i]-MasY[index][i-1]; 

            StepX:=(350*SIX)/SX; 

            StepY:=(350*SIY)/SY; 

            NewX:=Round(NewX+StepX); 

            NewY:=Round(NewY-StepY); 

            Image1.Canvas.LineTo(NewX,NewY); 

            Image1.Canvas.Pen.Width:=5; 

            Image1.Canvas.Pen.Color:=clRed; 

            Image1.Canvas.LineTo(NewX,NewY); 

            if i = 49 then 

            begin 

            Image1.Canvas.Pen.Width:=1; 

            Image1.Canvas.TextOut(60,NewY-5,floattostr(round(MasY[index][i]))); 

           Image1.Canvas.MoveTo(80,NewY); 

           Image1.Canvas.LineTo(100,NewY); 

           Z:=round(MasY[index][i]); 

            if MaxY>NewY then MaxY:=NewY; 

            end; 

            if i mod 10 = 0 then 

            begin 

            Image1.Canvas.Pen.Width:=1; 

            Image1.Canvas.TextOut(NewX,380,floattostr(((MasX[i])*100000000))); 

            Image1.Canvas.MoveTo(NewX,370); 

            Image1.Canvas.LineTo(NewX,380); 

            Image1.Canvas.MoveTo(NewX,NewY); 

            end; 

      end; 

      if index=1 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Teta1 = ' +form8.edit1.text); 

            if index=2 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Teta2 = ' +form8.edit4.text); 

            if index=3 then 
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      Image1.Canvas.TextOut(NewX+10,NewY,'Teta3 = ' +form8.edit5.text); 

            if index=4 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Teta4 = ' +form8.edit6.text); 

      inc(index); 

      end; 

     iii:=0; 

            countL:=0; 

      while iii<round(370-maxy) do 

      begin 

            iii:=iii+round((370-maxy)/20); 

            Image1.Canvas.Pen.Width:=1; 

            Z:=round((MaxY-iii)/MaxY); 

            if countL mod 2 =0 then 

            begin 

            Image1.Canvas.MoveTo(90,370-iii); 

            Image1.Canvas.LineTo(100,370-iii); 

            end 

            else 

            begin 

            Image1.Canvas.MoveTo(80,370-iii); 

            Image1.Canvas.LineTo(100,370-iii); 

            Image1.Canvas.TextOut(80,370-iii,floattostr(round((iii)*Z/(370-MaxY)))); 

            end; 

           inc(countL); 

      end; 

end; 

 

procedure TForm3.Button2Click(Sender: TObject); 

begin 

Image1.canvas.fillrect(Image1.canvas.cliprect); 

form1.Memo3.Clear; 

form1.Memo3.Text:='Пусто'; 

Image1.canvas.fillrect(Image1.canvas.cliprect); 

Label1.Visible:=false; 

Label2.Visible:=false; 

  form1.Fr:=0; 

  form1.eta:=0; 

  form1.mu:=0; 

  form1.R0:=0; 

  form1.R0_3:=0; 

  form1.d:=0; 

  form1.d_:=0; 

  form1.Teta0:=0; 

  form1.CurrTeta:=0; 

  form1.h:=0; 

  form1.Q0:=0; 

  form1.CurrQ:=0; 

  Sigma:=0 

end; 
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procedure TForm3.Save1Click(Sender: TObject); 

begin 

      if      SaveDialog1.Execute then 

      Image1.Picture.SaveToFile(SaveDialog1.FileName+'.bmp'); 

end; 

 

procedure TForm3.Print1Click(Sender: TObject); 

var 

 X1,X2,Y1,Y2:Integer; 

 PointsX,PointsY:double; 

 PrintDlg:TPrintDialog; 

begin 

 PrintDlg:=TPrintDialog.Create(Owner); 

 if PrintDlg.Execute then 

  begin 

   Printer.BeginDoc; 

   Printer.Canvas.Refresh;  

   Printer.Title:='Results'; 

   PointsX:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSX)/100; 

   PointsY:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSY)/100; 

   X1:=50; 

   Y1:=500; 

   X2:=round(X1+Image1.Picture.Bitmap.Width*PointsX); 

   Y2:=round(Y1+Image1.Picture.Bitmap.Height*PointsY); 

   Printer.Canvas.CopyRect(Rect(X1,Y1,X2,Y2),Image1.Picture.Bitmap.Canvas, 

             Rect(0,0,Image1.Picture.Bitmap.Width,Image1.Picture.Bitmap.Height)); 

   Printer.EndDoc; 

  end; 

 PrintDlg.Free; 

 end; 

end. 

 

 Unit7 

procedure TForm7.Button1Click(Sender: TObject); 

begin 

      form9.CountI:=0; 

  if Edit1.Text<>'' then 

  begin 

   inc(form9.CountI); 

  form1.Fr:=StrToFloat(form1.Edit4.Text); 

  form1.eta:=StrToFloat(Edit3.Text); 

  form1.mu:=StrToFloat(Edit2.Text); 

  Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu); 

 V:=StrToFloat(Edit1.Text); 

 R0_3:=V/((4/3)*3.1415); 

R0:=power(R0_3,1/3); 

form1.R0:=StrToFloat(form1.Edit12.Text); 

 form1.R0_3:=form1.R0*form1.R0*form1.R0; 

form1.V:=(4/3)*3.1415*form1.R0_3; 

Form1.Edit1.Text:=FloatToStr(form1.V); 
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 form1.d:=StrToFloat(form1.Edit10.Text); 

 form1.d_:=StrToFloat(form1.Edit11.Text); 

 form1.G:=G; 

   form1.Teta0:=StrToFloat(Edit7.Text); 

    form1.CurrTeta:=form1.Teta0; 

    form1.h:=StrToFloat(form1.Edit8.Text); 

     form1.Q0:=StrToFloat(form1.Edit5.Text); 

     form1.CurrQ:=form1.Q0; 

            Sigma:=StrToFloat(Edit1.text); 

            K:=0.15e8; 

            G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001))); 

             form1.G:=G; 

             Form7.Edit1.Text :=FloatToStr(G); 

             form1.G:=StrToFloat(Edit1.Text); 

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3)); 

 form1.a0:=form1.R0*power(form1.CurrQ,2/3); 

 A0:=StrToFloat(Edit5.Text); 

  CurrA:=A0; 

   B0:=power(R0*R0*R0/A0,1/2); 

  q0:=A0/B0;} 

  Form1.Button5.Click; 

  end; 

  if Edit4.Text<>'' then 

  begin 

   inc(form9.CountI); 

  form1.Fr:=StrToFloat(form1.Edit4.Text); 

  form1.eta:=StrToFloat(Edit3.Text); 

  form1.mu:=StrToFloat(Edit2.Text); 

  Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu); 

 V:=StrToFloat(Edit1.Text); 

 R0_3:=V/((4/3)*3.1415); 

R0:=power(R0_3,1/3); 

form1.R0:=StrToFloat(form1.Edit12.Text); 

 form1.R0_3:=form1.R0*form1.R0*form1.R0; 

form1.V:=(4/3)*3.1415*form1.R0_3; 

Form1.Edit1.Text:=FloatToStr(form1.V); 

 form1.d:=StrToFloat(form1.Edit10.Text); 

 form1.d_:=StrToFloat(form1.Edit11.Text); 

     form1.G:=G; 

   form1.G:=StrToFloat(Edit4.Text); 

   form1.Teta0:=StrToFloat(Edit7.Text); 

    form1.CurrTeta:=form1.Teta0; 

    form1.h:=StrToFloat(form1.Edit8.Text); 

     form1.Q0:=StrToFloat(form1.Edit5.Text); 

  form1.CurrQ:=form1.Q0; 

              Sigma:=StrToFloat(edit4.text); 

              K:=0.15e8; 

              G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001))); 
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               form1.G:=G; 

              Form7.Edit4.Text:=FloatToStr(G); 

              form1.G:=StrToFloat(Edit4.Text); 

    form1.b0:=form1.R0*power(form1.CurrQ,(-1/3)); 

    form1.a0:=form1.R0*power(form1.CurrQ,2/3); 

     Form1.Button5.Click;  end; 

  if Edit5.Text<>'' then 

  begin 

   inc(form9.CountI); 

    form1.Fr:=StrToFloat(form1.Edit4.Text); 

  form1.eta:=StrToFloat(Edit3.Text); 

  form1.mu:=StrToFloat(Edit2.Text); 

  Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu); 

 V:=StrToFloat(Edit1.Text); 

 R0_3:=V/((4/3)*3.1415); 

R0:=power(R0_3,1/3); 

form1.R0:=StrToFloat(form1.Edit12.Text); 

 form1.R0_3:=form1.R0*form1.R0*form1.R0; 

form1.V:=(4/3)*3.1415*form1.R0_3; 

Form1.Edit1.Text:=FloatToStr(form1.V); 

form1.d:=StrToFloat(form1.Edit10.Text); 

 form1.d_:=StrToFloat(form1.Edit11.Text); 

    form1.G:=G; 

   form1.G:=StrToFloat(Edit5.Text); 

   form1.Teta0:=StrToFloat(Edit7.Text); 

    form1.CurrTeta:=form1.Teta0; 

    form1.h:=StrToFloat(form1.Edit8.Text); 

    form1.Q0:=StrToFloat(form1.Edit5.Text); 

  form1.CurrQ:=form1.Q0; 

    Sigma:=StrToFloat(edit5.text); 

     K:=0.15e8; 

      G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001))); 

              form1.G:=G; 

              Form7.Edit5.Text:=FloatToStr(G); 

              form1.G:=StrToFloat(Edit5.Text); 

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3)); 

 form1.a0:=form1.R0*power(form1.CurrQ,2/3); 

   A0:=StrToFloat(Edit5.Text); 

  CurrA:=A0; 

   B0:=power(R0*R0*R0/A0,1/2); 

  q0:=A0/B0; 

  Form1.Button5.Click; 

  end; 

  if Edit6.Text<>'' then 

  begin 

   inc(form9.CountI); 

    form1.Fr:=StrToFloat(form1.Edit4.Text); 

  form1.eta:=StrToFloat(Edit3.Text); 

  form1.mu:=StrToFloat(Edit2.Text); 
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  Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu); 

 V:=StrToFloat(Edit1.Text); 

 R0_3:=V/((4/3)*3.1415); 

R0:=power(R0_3,1/3); 

 form1.R0:=StrToFloat(form1.Edit12.Text); 

 form1.R0_3:=form1.R0*form1.R0*form1.R0; 

form1.V:=(4/3)*3.1415*form1.R0_3; 

Form1.Edit1.Text:=FloatToStr(form1.V); 

 form1.d:=StrToFloat(form1.Edit10.Text); 

 form1.d_:=StrToFloat(form1.Edit11.Text); 

     form1.G:=G; 

   form1.G:=StrToFloat(Edit6.Text); 

   form1.Teta0:=StrToFloat(Edit7.Text); 

    form1.CurrTeta:=form1.Teta0; 

    form1.h:=StrToFloat(form1.Edit8.Text); 

     form1.Q0:=StrToFloat(form1.Edit5.Text); 

  form1.CurrQ:=form1.Q0; 

                Sigma:=StrToFloat(edit6.text); 

                K:=0.15e8; 

                G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001))); 

                form1.G:=G; 

form1.b0:=form1.R0*power(form1.CurrQ,(-1/3)); 

 form1.a0:=form1.R0*power(form1.CurrQ,2/3); 

  Form1.Button5.Click;end; 

end; 

 

Unit8 

procedure TForm8.Button1Click(Sender: TObject); 

begin 

  if Edit1.Text<>'' then 

  begin 

  inc(form3.CountI); 

  form1.Fr:=StrToFloat(form1.Edit4.Text); 

  form1.eta:=StrToFloat(Edit3.Text); 

  form1.mu:=StrToFloat(Edit2.Text); 

  Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu); 

 V:=StrToFloat(Edit1.Text); 

R0:=power(R0_3,1/3); 

 form1.R0:=StrToFloat(form1.Edit12.Text); 

 form1.R0_3:=form1.R0*form1.R0*form1.R0; 

form1.V:=(4/3)*3.1415*form1.R0_3; 

Form1.Edit1.Text:=FloatToStr(form1.V); 

 form1.d:=StrToFloat(form1.Edit10.Text); 

 form1.d_:=StrToFloat(form1.Edit11.Text); 

        Sigma:=StrToFloat(edit7.text); 

        K:=0.15e8; 

        G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001))); 

    form1.G:=G; 
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   form1.Teta0:=StrToFloat(Edit1.Text); 

    form1.CurrTeta:=form1.Teta0; 

    form1.h:=StrToFloat(form1.Edit8.Text); 

     form1.Q0:=StrToFloat(form1.Edit5.Text); 

  form1.CurrQ:=form1.Q0; 

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3)); 

 form1.a0:=form1.R0*power(form1.CurrQ,2/3); 

  Form1.Button5.Click; 

  end; 

  if Edit4.Text<>'' then 

  begin 

    inc(form3.CountI); 

  form1.Fr:=StrToFloat(form1.Edit4.Text); 

  form1.eta:=StrToFloat(Edit3.Text); 

  form1.mu:=StrToFloat(Edit2.Text); 

  Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu); 

end; 

end. 

 

Unit9 

 

procedure TForm9.Formshow(Sender: TObject); 

Var 

      i:integer; 

      SX,SIX,SIY:Real; 

      StepX,StepY:Real; 

      OldX,OldY,NewX,NewY:integer; 

      MasX:array [0..99] of Real; 

      MasY:array [1..4,0..99] of Real; 

      BY:Real; 

      SY,Sigma,KG:Real; 

      index:integer; 

      MaxY:integer; 

      Z:integer; 

      iii:integer; 

      countL:integer; 

    begin 

    for i:=1 to 100 do 

      MasX[i-1]:= strtofloat(form1.Memo1.Lines.Strings[i]); 

      for i:=1 to Form1.Memo3.Lines.Count-1 do 

      begin 

            if (i<101) then MasY[1][i-1]:= strtofloat(form1.Memo3.Lines.Strings[i]); 

            if (i>=101) and (i<201) then MasY[2][i-101]:= 

strtofloat(form1.Memo3.Lines.Strings[i]); 

            if (i>=201) and(i<301) then MasY[3][i-201]:= 

strtofloat(form1.Memo3.Lines.Strings[i]); 

            if (i>=301) and (i<401) then MasY[4][i-301]:= 

strtofloat(form1.Memo3.Lines.Strings[i]); 

      end; 

       Image1.Canvas.MoveTo(100,370); 
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      Image1.Canvas.LineTo(500,370); 

      Image1.Canvas.MoveTo(100,370); 

      Image1.Canvas.LineTo(100,0); 

      Image1.Canvas.Pen.Color:=clBlack; 

      SX:=MasX[99]-MasX[0]; 

      SY:=MasY[1][99]-MasY[1][0]; 

      if SY<MasY[2][99]-MasY[2][0] then SY:=MasY[2][99]-MasY[2][0]; 

      if SY<MasY[3][99]-MasY[3][0] then SY:=MasY[3][99]-MasY[3][0]; 

      if SY<MasY[4][99]-MasY[4][0] then SY:=MasY[4][99]-MasY[4][0]; 

      index:=1; 

      MaxY:=round(MasY[1][99]); 

      while index<=CountI do 

      for index:=1 to 4 do 

      begin 

      NewX:=round(100+MasX[0]); 

      NewY:=round(370-MasY[index][0]); 

      Image1.Canvas.Pen.Width:=5; 

      Image1.Canvas.MoveTo(NewX,NewY); 

      Image1.Canvas.Pen.Color:=clRed; 

      Image1.Canvas.LineTo(NewX,NewY); 

      Image1.Canvas.TextOut(80,NewY,floattostr(round(MasY[index][0]))); 

      Image1.Canvas.Pen.Width:=1; 

      Image1.Canvas.MoveTo(80,NewY); 

      Image1.Canvas.LineTo(100,NewY); 

      Image1.Canvas.TextOut(NewX,380,floattostr((MasX[0]))); 

      Image1.Canvas.MoveTo(NewX,370); 

      Image1.Canvas.LineTo(NewX,390); 

      Image1.Canvas.MoveTo(NewX,NewY); 

      for i:=1 to 99 do 

      begin 

      Image1.Canvas.Pen.Width:=3; 

            SIX:=MasX[i]-MasX[i-1]; 

            SIY:=MasY[index][i]-MasY[index][i-1]; 

            StepX:=(350*SIX)/SX; 

            StepY:=(350*SIY)/SY; 

            NewX:=Round(NewX+StepX); 

            NewY:=Round(NewY-StepY); 

            Image1.Canvas.LineTo(NewX,NewY); 

            Image1.Canvas.Pen.Width:=3; 

            Image1.Canvas.Pen.Color:=clRed; 

            Image1.Canvas.LineTo(NewX,NewY); 

            if i = 99 then 

            begin 

            Image1.Canvas.Pen.Width:=1; 

            Image1.Canvas.TextOut(80,NewY,floattostr(round(MasY[index][i]))); 

            Z:=round(MasY[index][i]); 

            Image1.Canvas.MoveTo(80,NewY); 

            Image1.Canvas.LineTo(100,NewY); 

            if MaxY>NewY then MaxY:=NewY; 

            end; 
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            if i mod 10 = 0 then 

            begin 

            Image1.Canvas.Pen.Width:=1; 

            Image1.Canvas.TextOut(NewX,380,floattostr(((MasX[i])*100000000))); 

            Image1.Canvas.MoveTo(NewX,370); 

            Image1.Canvas.LineTo(NewX,380); 

            Image1.Canvas.MoveTo(NewX,NewY); 

            Image1.Canvas.Pen.Color:=clBlack; 

            end; 

      end; 

      if index=1 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Sigma1 = ' +form7.edit1.text); 

            if index=2 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Sigma2 = ' +form7.edit4.text); 

            if index=3 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Sigma3 = ' +form7.edit5.text); 

 

            if index=4 then 

      Image1.Canvas.TextOut(NewX+10,NewY,'Sigma4 = ' +form7.edit6.text); 

      inc(index); 

      end; 

            iii:=0; 

            countL:=0; 

      while iii<round(370-maxy) do 

      begin 

            iii:=iii+round((370-maxy)/20); 

            Image1.Canvas.Pen.Width:=1; 

            Z:=round((MaxY-iii)/MaxY); 

            if countL mod 2 =0 then 

            begin 

            Image1.Canvas.MoveTo(90,370-iii); 

            Image1.Canvas.LineTo(100,370-iii); 

            end 

            else 

            begin 

            Image1.Canvas.MoveTo(80,370-iii); 

            Image1.Canvas.LineTo(100,370-iii); 

            Image1.Canvas.TextOut(80,370-iii,floattostr(round((iii)*Z/(370-MaxY)))); 

            end; 

             inc(countL); 

      end; 

end; 

 

procedure TForm9.Save1Click(Sender: TObject); 

begin 

 if      SaveDialog1.Execute then 

      Image1.Picture.SaveToFile(SaveDialog1.FileName+'.bmp'); 

end; 

 

procedure TForm9.Print1Click(Sender: TObject); 
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var 

 X1,X2,Y1,Y2:Integer; 

 PointsX,PointsY:double; 

 PrintDlg:TPrintDialog; 

begin 

 PrintDlg:=TPrintDialog.Create(Owner); 

 if PrintDlg.Execute then 

  begin 

   Printer.BeginDoc; 

   Printer.Title:='Results'; 

   Printer.Canvas.Refresh; 

   PointsX:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSX)/100; 

   PointsY:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSY)/100; 

   X1:=50; 

   Y1:=500; 

   X2:=round(X1+Image1.Picture.Bitmap.Width*PointsX); 

   Y2:=round(Y1+Image1.Picture.Bitmap.Height*PointsY); 

   Printer.Canvas.CopyRect(Rect(X1,Y1,X2,Y2),Image1.Picture.Bitmap.Canvas, 

             Rect(0,0,Image1.Picture.Bitmap.Width,Image1.Picture.Bitmap.Height)); 

   Printer.EndDoc; 

  end; 

 PrintDlg.Free; 

end; 

end. 
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