

Ministry of education and science of

Ukraine

Kyiv national university of

technologies and design

Department of computer sciences

P
R

O
G

R
A

M
M

IN
G

 O
F

 N
U

M
E

R
IC

A
L

 M
E

T
H

O
D

S
 A

N
D

 E
X

A
M

P
L

E
S

 O
F

 P
R

A
C

T
IC

A
L

 A
P

P
L

IC
A

T
IO

N

PROGRAMMING OF

NUMERICAL METHODS AND

EXAMPLES OF PRACTICAL

APPLICATION

Shcherban’ V. Yu.

Rezanova V.G.

Demkivska T.I.

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

KYIV NATIONAL UNIVERSITY OF TECHNOLOGIES AND DESIGN

Shcherban V.Yu., Rezanova V.G., Demkivska T.I.

PROGRAMMING OF NUMERICAL

METHODS AND EXAMPLES OF

PRACTICAL APPLICATION

Recommended by the Academic Council of the Kyiv National University of

Technology and Design (Protocol № 5 of December, 15, 2021)

Kyiv-2021

 2

УДК 004.42

ББК 65.9(4Укр)306.4-6

Щ 610

Recommended by the Academic Council of the Kyiv National University of Technology and

Design for a wide range of researchers, teachers and engineers (Protocol № 5 of December,

15, 2021)

Authors:

SHCHERBAN’ V.Yu. – Laureate of the State Prize of Ukraine in the field of science and

technology, professor;

REZANOVA V.G. - Candidate of Technical Sciences, Associate Professor of the Department

of Computer Science, Kyiv National University of Technology and Design ;

DEMKIVSKA T.I. - Candidate of Technical Sciences, Associate Professor of the Department

of Computer Science, Kyiv National University of Technology and Design

Reviewers:
OPANASENKO V, M. - Laureate of the State Prize of Ukraine in the field of science and

technology, Doctor of Technical Sciences, Professor, Leading Research Fellow of the

Institute of Cybernetics of the National Academy of Sciences of Ukraine;

CHEPELYUK O. - Doctor of Technical Sciences, Professor, Head of the Department,

Kherson National Technical University;

KRASNITSKY S.M. - Doctor of Technical Sciences, Professor, Kyiv National University of

Technology and Design

Щ 610 Shcherban’ V.Yu., Rezanova V.G., Demkivska T.I. Programming of numerical methods and

examples of practical application. Monography. – К.: Education of Ukraine, 2021. – 150 с.

ISBN 978-617-8077-04-4

The monograph summarizes the experimental and theoretical developments of the

authors and describes the developed mathematical models and software for research in the

field of polymer composites with adjustable structure and properties. Particular attention is

paid to the created software.

The monograph is intended for teachers, scientists, graduate students majoring in

computer science and a wide range of engineers. The book can also be useful for senior

students and graduate students of these specialties.

 УДК 004.42

 ББК 65.9(4Укр)306.4-6

ISBN 978-617-8077-04-4 ©, V.Yu.Shcherban’, 2021

 © Education of Ukraine, 2021

 3

CONTENT

FOREWORD 4

PART 1. Numerical methods and their programming

 1. Algebra of matrices. Calculating of determinants. Actions with

matrices.

 6

 2. Systems of linear equations (SLE), their solution by Kramer

formulas, the method of inverse matrix, the method of Gauss

 21

 3. Solving of SLE by iterative methods. Method of simple iterations.

Seidel method. Terms of convergence of iterative processes.

 25

4. Transcendental equation with one variable. Separation of roots.

Clarification of roots (methods dichotomy, chords, tangents, simple

iterations)

31

 5. Systemsof transcendental equations. The solution of two

nonlinear equations by Newton method

37

6. Differential equations. Methods for solving differential equations. .

Systems of differential equations

40

7. The characteristic determinant and characteristic equation of the

matrix. The eigenvalues and eigenvectors of matrices

49

 8. Interpolation problem with simple nodes. Vector interpolation

problem with simple nodes

56

9. Bezier curves on the plane and in space 60

10. Linear and homogeneous coordinates on the plane

63

11. Basic conversion in the plane. The main symbol of affine

transformations.

67

12. The compositions of affine transformations on the plane. 73

13. Curves of the second order: representation by matrix and

invariants. Reduction of the second-order curve to the canonical

form. Classification of second-order curves

75

 14. Output of second-order curves on display. Method of cross-

section . Iterative algorithms displaying the curves of the second

order

84

PART 2. Practical application and Software

1. Mathematical modelling of dispersed phase

drop deformation in nano-filled polyner mixture melts

92

2.Planning the experiment and optimization of the content of

nanoadition in polypropylene monothreads

98

LITERATURE 105

ANNEX 109

 4

FOREWORD

Analysis of the current state and prospects of the information technology

industry shows that active research has state priorities in countries with the most

developed economies. The implementation of their results changes the world

development trends in the direction of significantly expanding the capabilities of

a wide range of industries: chemistry, pharmaceuticals, pharmacology,

construction, aviation, aeronautics and astronautics, energy, defense, transport

and more.In studies of technical, technological, economic directions often have

to build and analyze mathematical models of real phenomena and processes.

Scientific problems of light industry are not an exceptions here.

In studies of technical, technological, economic directions often have to

build and analyze mathematical models of real phenomena and processes.

Scientific problems of light industry are not an exceptions here.

The purpose of mathematical modeling can be different. Often this

purpose is the prediction (forecasting) behavior of certain characteristics of

the objects. Types of mathematical models used are very different.

Of great importance are mathematical models in the form of differential

equations, which are one of the main instruments of study a variety of

phenomena and processes.

Linear algebraic equations does not necessarily serve as a means of

approximating. In many situations, they provide a direct description of the

phenomenon. These are, in particular, the situation are reduced to a certain

number of relations "balance" type. Examples of this may be the problem of

balancing economic sectors, resource allocation (of different nature), some

electrical circuits etc.

In mathematical modeling of the phenomenon often have to deal

nonlinear equations (algebraic or transcendental) or systems, and researchers

need to have available methods for solving such relationship.

 5

By the very specific problems of mathematical modeling in light

industry refers selection of mathematical expressions to describe the various

curves and surfaces. These curves can be, for example, outlines the real parts of

articles of clothing or footwear, and surface - spatial fragments of such

products.

A number of important industrial and economic problems (not just light

industry) naturally united not so much the content as methods for their solution.

The goal of teaching monography is to study the application of

mathematical methods for solving complex problems using modern

computers.

 6

PART 1. NUMERICAL METHODS AND THEIR

PROGRAMMING

1. Algebra of matrices. Calculating of determinants. Actions

with matrices

Key provisions

 System of m*n numbers (real and complex), placed in a rectangular table

with m lines and n columns























nmmm

n

n

aaaa

aaaa

aaaa

A

...

....................

...

...

321

2232221

1131211

, (1.1)

is called the matrix (numerical).

 The numbers)...,,2,1;...,,2,1(njmiaij  , that make up this matrix, are

called its elements. The first index i means line number of the element, and the

second j ─ column number of it .

 For matrix (1.1) is often used abbreviated representation

  
ij

aA )...,,2,1;...,,2,1(njmi  або  
nmijaA

,
 ,

and they say that the matrix A is of type nm .

 If nm  , then matrix A is called square matrix of order n. If nm  , then

matrix is called rectangular. In particular, the matrix of type n1 is called

vector-line and matrix of type 1m ─ vector-column. Number (scalar) can be

viewed as a matrix of type 11 . Square matrix





















n
a

a

a

A

...000

............

0...00

0...00

2

1

 (1.2)

is called diagonal matrix.

 7

 If the)...,,2,1(1 nia
ij

 , then matrix (1.2) is called the identity matrix

and is denoted by the letter Е, i.e.





















1...000

.............

0...010

0...001

E .

 By entering Kronecker character










,,1

;,0

jiякщо

jiякщо
ij



we can write:  
ij

E  .

 Matrix, all elements of which are zero, called zero-matrix and is denoted

by 0. To mark number of rows and columns of zero-matrix, they use

designation: mn0 .

 For the square matrix  
nnij

aA
,

 there is the determinant

nnnn

n

n

aaa

aaa

aaa

A

...

...

...

det

21

22221

11211

 .

 We should not equate these two concepts: the matrix is an ordered system

of numbers recorded in the form of a rectangular table, and its determinant is a

number which can be defined by certain rules:

  
)...,(

21

21

21
...)1(det

n

n

aaa
naaa

x aaaA (1.3)

where the sum (1.3) includes all possible permutations)...,(,21 n of elements

n...,,2,1 and contains n! of summand, and 0 , if an even permutation, and

1 , if an odd permutation.

Actions with matrices

 The equality of matrices

 8

 Two matrices  
ij

aA  and  
ij

bB  are considered as equal: BA  , if

they are of the same type, i. e. They have the same number of rows and columns,

and their respective elements are equal, i.e.
ijij

ba  .

 The sum of matrices

 The sum of two matrices  
ij

aA  and  
ij

bB  of the same type is a matrix

 
ij

cC  of the same type, the elements of which
ij

c are equal to the sums of

corresponding elements
ij

a and
ij

b of those matrices A and B , i.e.
ijijij

bac  .

So,



























mnmnmmmm

nn

nn

bababa

bababa

bababa

BA









2211

2222222121

1112121111

 From the determination of the sum of two matrices immediately follows

its properties:

1) CBACBA )()(;

2) ABBA  ;

3) AA  0 .

Similarly the difference of matrices is determinated :



























mnmnmmmm

nn

nn

bababa

bababa

bababa

BA









2211

2222222121

1112121111

.

 Multiply matrix by the number

 The product of matrix  
ij

aA  by the number (or the product of the

number by matrix) is matrix, the elements of which are obtained by

multiplying all elements of the matrix A by that number , so

 9





















mnmm

n

n

aaa

aaa

aaa

AA

















21

22221

11211

.

From the determination of the product of the matrix by the number immediately

follows its properties:

1) AA 1 ;

2) 00 A ;

3) AA)()(  ;

4) AAA  )(;

5) BABA  )(

(here A and B – are matrices; and – are numbers).

Note, that if the matrix A - is a square order n, then

AA n detdet   .

Мatrix AA)1( is called opposite. Not difficult to see that if the matrix A

and В are of the same types, then)(BABA  .

 Multiply matrices

Let





















mnmm

n

n

aaa

aaa

aaa

A









21

22221

11211

 і





















mnmm

n

n

bbb

bbb

bbb

B









21

22221

11211

-matrices of types nm and qp correspondingly. If the number of columns

of the matrix A equals the number of rows of the matrix B, i.e.

 pn  ,

then for these matrices is defined matrix C of type qm , called their product:

 10





















mqmm

q

q

ccc

ccc

ccc

C









21

22221

11211

,

where),,2,1;,,2,1(
2211

qjmibababac
njinjijiij

  .

 From the determination of the product of two matrices immediately

follows the rule to multiply matrices: to receive an element which is in i-th line

and j-th column of the product of two matrices, it is necessary to multiply

elements of i-th row of the first matrix by the respective elements of j-th

column of the second matrix and then to add obtained products.

 The product AB has sense if and only if the matrix A has so many rows ,

how many columns has matrix B. In particular, it is possible to multiply square

matrices only of the same order.

 In cases when AB=BA, matrices A and B are called rearrangement

(commutative). For example, it is easy to see that identity matrix E

rearrangement with any square matrix A of the same order, and

 AEAAE 

 Thus, the identity matrix E plays a role of "one" in multiplication.

 If A and B – are square matrices of the same order, then

 BABAAB detdet)det()det( .

 For example, for such matrices we have:

87

65

43

21

5043

2219


 and

87

65

43

21

4631

3423
 .

 11

 Transposed matrix

If we change in matrix



















mnmm

n

n

aaa

aaa

aaa

A

...

...

...

21

22221

11211

of the type nm the rows with corresponding colomns, we obtain so called

transposed matrix:



















mnmm

n

n

T

aaa

aaa

aaa

AA

...

...

...

21

22221

11211

,

of the type nm . In particular, for vector-line  naaaa ...21 the

transposed matrix is vector-column





















na

a

a

a

2

1

.

Transposed matrix has such properties:

1) the twice transposed matrix is the original one:

 ;)''(" AAA 

2) the transposed matrix of sum is equal to sum of transposed matrices:

 ;'')'(BABA 

3) The transposed matrix of the product is equal to product of transposed

matrices:

 ;'')'(ABAB 

Really, the element of і-th row and j-th colomn of matrix)'(AB is equal to the

element of j-th row and і-th colomn of matrix AB , i.e.:

 2211 nijnijij bababa 

 12

The last expression is obviously the sum of the products of elements of i-th line

of matrix 'B and respective elements of j-th column of the matrix 'A , that is

equal to the general element of matrix '' AB .

If matrix A – is square, then obviously

 .det'det AA 

Matrix][ijaA  is called symmetric, if it matches with its transposed, i.e. if:

 .' AA  (1.4)

From equation (1.4) follows that: 1) symmetric matrix – is square)(nm  and 2)

its elements, which are symmetric relatively main diagonal, are equal to

each other, i.e.

 .ijji aa 

The product ,'AAC  is obviously a symmetric matrix, so how

 .'')''()''(' CAAAAAAC 

 The inverse matrix

 Definition 1. Inverse matrix in relation to this matrix is a matrix, which is

being multiplied right and left side with this matrix gives the identity matrix.

 For matrix A let's denote 1A - inverse matrix. Then according to the

definitioin we have:

 ,11 EAAAA  
 (1.5)

where E – identity matrix.

 Finding the inverse matrix to this is called inversion of the matrix.

 A square matrix is called nonsingular if its determinant is different from

zero.

Otherwise matrix called special or singular.

 Every nonsingular matrix has an inverse matrix.

 Let's we have nonsingular matrix of n-th order

 13

 ,

...

............

...

...

21

22221

11211





















nnnn

n

n

aaa

aaa

aaa

A

where 0det A .

 Let's construct for it so-called adjoint matrix

 ,

...

............

...

...

~

21

22212

12111





















nnnn

n

n

AAA

AAA

AAA

A

where ijA – algebraic additions (minors with signs) of the respective elements

),...,2,1,(njiaIJ  .

Note that the algebraic additions of elements of rows are plaved in

corresponding columns, so it is an operation of transposition.

Let's divide all elements of the last matrix on the value of determinant of

the matrix A , i.e. on  :

































nnnn

n

n

AAA

AAA

AAA

A

...

.........

...

...

21

22212

12111

* .

Notes 1. For a given matrix A its inverse matrix А 1 is only.

 Notes 2. Special square matrix has not the inverse.

 Some basic properties of the inverse matrix:

 The determinant of inverse matrix is equal to the reciprocal of the

determinant of the original matrix.

 Indeed, let

 .1 

 Given that the determinant of the product of two square matrices is the

product of determinants of matrices, we get:

 14

 .1detdetdet 1 

 So,





det

1
det 1

.

 The inverse matrix of product of square matrices is the product of the

inverse matrices of multipliers, taken in reverse order, i.e.

   111 


 Indeed,

       111111

 and

       111111

 So, 11   is inverse matrix to .

 In more general

   1

1

1

1

11

21






 ррр

 The transpose inverse matrix is equal to the inverse transpose matrix:

     .
11  




 Indeed, if transposed the main matrix equality 1 , we get:

    .11 





 

 Hence, multiplying last equality on the left on matrix   1
 , will have:

      



 111

 or

    11  


 ,

 as was required to proof.

 Note. The matrix equations are easily solved With the help of inverse

matrices.

 Equations  and  .

 15

 Indeed, if 0det  , then  1 and 1 .

 Degree matrix

 Let A - square matrix. If p - integer, the considered

 р

разр






 Additionally set, that 0 , where  - is identity matrix. If A is

nonsingular matrix, you can introduce the concept of a negative degree,

defining it by relation:

  рр 1 

 For degrees of the matrices with integer exponent are valid ordinary rules:

 1) qpqр  ;

 2)   pqqp  .

 Non-square matrix, as is known, not to be present degree.

Norm of the matrix

 Inequality BA between matrices  ijaA  and  ijbB  of the same

types means, that

 ijij ba 

 Absolute value (modulus) of the matrix  ijaA  we will understand

matrix

    ijaA 

 where  ija - are the modulus of elements of matrix А.

 If А and В – are matrices, for which the operations А+В and АВ have

sense, then:

AAв

BAABb

BABAa

 





)

;)

;)

(α – is number)

 In particular, we have

 16

pp AA 

 (р – integer) .

 The norm of the matrix ijaA  means the real number A , which have

such properties:

BAABг

BABAв

ААparticularinnumberAAб

АiffAAa









)

)

,__),()

00,0)



 (А and В – are matrices, for which the appropriate operations have sense). In

particular, for square matrix we have:

 ,
pp AA 

where р – integer.

 Let's note another important inequality between the norms of matrices А

and В of the same type. Using condition c), we have:

 ABAABAB )(

 From here

 .ABABBA 

 Similarly,

 .BABA 

 So, .ABBA 

 Thereafter, for the matrix  ijaA  of arbitrary type we will consider three

main easyly calculated norms:

 17

).()3

);(max)2

);(max)1

2

,

normkaA

normlaA

normmaA

ji

ijk

i

ij
jl

j

ij
jm













 Rank of the matrix

 We have a rectangular matrix





















mnmm

n

n

aaa

aaa

aaa

A

...

....................

...

...

21

22221

11211

If in this matrix randomly select k rows and k columns, where

k≤min(m, n), the elements that are at the intersection of this rows and columns,

are forming a square matrix of order k. The determinant of this matrix is called

the minor of k-th order matrix A.

 Definition. The maximum order of minor of matrix , different from

zero, is called the rank of matrix.

 In other words, the matrix A has rank r, if:

1) There is at least one minor of order r that is different from zero;

2) all the minors of matrix A of order r + 1 and higher are equal to zero.

 Rank of the zero matrix, i.e. matrix consisting of zeros, is zero. The

difference between the smallest of the numbers m and n and rank is called the

defect of the matrix.

 Elementary transformation matrices

 The following transformation matrices are called elementary:

1) permutation of two rows or columns;

2) multiplication of all the elements of any row (column) on the same

number different from zero;

 18

3) adding to the elements of a row (column) the elements of the other row

(column) multiplied by the same number.

 Two matrices are called equivalent, if one can be obtained from another

through a finite number of elementary transformations. These matrices are not,

in general, equal, but have the same rank.

 Easy to ensure, that each elementary transformation of a square matrix A

is equivalent to multiplication last for some nonsingular matrix. However, if the

conversion is done on lines (columns) matrix A, the multiplier should be left

(right) and represent the result of the related elementary transformation to the

identity matrix.

 For example, moving the matrix



















333231

232221

131211

aaa

aaa

aaa

A

 second and third lines, we obtain the equivalent matrix:



















232221

333231

131211
~

aaa

aaa

aaa

A .

 The same matrix A
~

 can be obtained, if in identity matrix



















100

010

001

E

rearranged second and third lines



















010

100

001
~
E

 and the resulting matrix multiply by the left side on the matrix А, i.e. AEA
~~

 .

 Similar way are performed other elementary transformation.

 Note that if in the equation EAA 1 we perform the same transformation

of rows of matrices A and E as long as the A is not converted into a identity

 19

matrix, we will have EAAE
~~ 1 , where E

~
 - – transformed the identity matrix.

Hence, i.e. EAE 
~

, we have EA
~1 , i.e. the inverse matrix А

-1
 is the converted

identity matrix. There is the method of calculation of inverse matrix is based on

this idea of converting lines.

Calculation of determinants

 Elementary transformation matrices provide the most convenient method

of calculating the determinant of this matrix. Suppose, for example,





















nnnn

n

n

n

aaa

aaa

aaa

...

............

...

...

21

22221

11211

.

 Assuming that a11 0 , we have:

























nnn

n

n

n

n

aa
a

a

aa
a

a

aa

a

...

............

...

...1

2

11

1

)1(

2

)1(

22

11

21

112

11

 Hence, subtracting from the elements аij, which belong to the j-th column

(j>=2) the relevant elements of the first column multiplied by а1j, we get:

 111

)1()1(

2

11

1

)1(

2

)1(

22

11

21

11

...

............

...

0...01

























 n

nnn
n

n

n a

aa
a

a

aa
a

a

a

where



















 

)1()1(

3

)1(

2

)1(

3

)1(

33

)1(

32

)1(

2

)1(

23

)1(

22

1

...

............

...

...

nnnn

n

n

n

aaa

aaa

aaa

 20

 and)....,3,2,(
11

11)1(nji
a

aa
aa

ji

ijij 

 Apply to the determinant 1n the same way. If all the elements

),,...,2,1(0)1(nia i

ii 

 then finally obtain:

)1()1(

2211 ...  n

nnn aaa

 If in any determinant
kn the upper left element 0)(

1,1 

k

kka , we have to

rearrange the rows or columns of the determinant kn , that needed element was

different from zero (it is always possible if the determinant 0). Of course,

you will need to consider changing the sign of the determinant kn .

 It's possible to give more general rule. Let determinant]det[
~

ijn a

is changed so, that 1 pq
 ( pq

 – the main element), i.e.

Then  

 
~~

1
)1(

n

qp

n
 ,

where  

~
1n

det[
)1(

ij
] – is the determinant of the (n - 1)-th order, which we

obtain from n
 by deleting p-th row and q-th colomn, followed by

conversion elements by the formula:

  pjiqijij


)1(

nnnjnqn

pnpjp

inijiqi

njq

n

aaaa

aaa

aaaa

aaaa

.........

..

......1...

..

.........

..

.........

~

1

1

1

11111



 21

i.e., each element 
)1(

ij
 of the determinant  

~
1n
 equal to the corresponding

element  ij
 of determinant of the matrix 

~
n
, reduced by the product of its

"projections"  iq
 and  pj

on the erased column and row of the original determinant. Confirmation of this

statement easily follows from the general properties of determinants.

 Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 1.

2. Systems of linear equations (SLE),

their solution by Kramer formulas,

the method of inverse matrix, Gauss method

General concepts and definitions

 When conducting research of mechanical systems often have to face the

necessity of solving systems of linear equations.

 In general, the system of linear equations can be represented as follows:



















mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

..

,...

,...

2211

22222121

11212111

 (2.1)

where)...,,2,1;...,,2,1(njmia
ij

 — coefficients of the unknowns;

)...,,2,1(nix
i

 — unknowns;

)...,,2,1(mib
i

 — constants;

 n — the number of unknowns in the system;

 m — number of equations.

 22

 The system of equations (2.1) conveniently presented in vector form

 bAx  (2.2)

where А — matrix of матриця coefficients)...,,2,1;...,,2,1(njmia
ij

 ;

 x = (x1,…xn) — sought-for n - component vector;

 b = (b1,…,bm) — given m - component vector (vector right parts).

 Tasks, that are reduced to solving systems of linear equations, generally

are mostly statically defined (number of unknowns equals the number of

possible equations, i.e. m = n). In this case, a system of linear equations (2.1)

can be represented as follows (coefficient matrix A is square):



















nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

..

,...

,...

2211

22222121

11212111

 (2.3)

 For the square matrix  
nnij

aA
,

 there is the determinant det A.

 Determinant is a number which can be defined by certain rules:

  
)...,(

21

21

21
...)1(det

n

n

aaa
naaa

x aaaA

where the sum (3) includes all possible permutations)...,(,21 n of elements

n...,,2,1 and contains n! of summand, and 0 , if an even permutation, and

1 , if an odd permutation.

The determinant of the coefficient matrix A can be denoted by one of the

following methods:

nnnn

n

n

n

aaa

aaa

aaa

A

...

............

...

...

det

21

22221

11211

 (2.4)

If 0det A the matrix A is called nondegenerate. If the system of

equations (2.3) has a solution, it is called compatible. Otherwise it will be called

imcompatible or contradictory.

 23

If the right parts vector b is 0, the system (2.3) is called homogeneous.

Homogeneous system of equations always compatible. It has non-zero solutions

when 0det A .

If the system (2.3) has the only solution they say that the system of

equations is defined. If there are two or more solutions of the system it is called

uncertain.

The case when the determinant 0det A provides for the only solution.

Methods for solving systems of linear equations

 Formulas of Kramer

The exact solution of system (2.3) in explicit form can be obtained using

formulas Kramer. The method consists in sequential dividing of the transformed

determinant (in which the coefficients of the corresponding column of the

system are replaced by column nbbb ,..., 21) by the initial determinant composed

of elements of left side of equations (2.3). Thus, the vector of solutions of

system





























nx

x

x

x

.

.

.

2

1

 can be defined as follows:
































































nnx

x

x

x

.

.

.1

.

.

.

2

1

2

1

, (2.5)

 24

where

nninninn

nii

nii

j

n

i
jii

aabaa

aabaa

aabaa

bA

......

..................................

......

......

1,1,1

21,221,221

11,111,111

1









  — are the determinants,

obtained from the determinant Δ by replacing of its i-th column by column of

right parts of the system (2.3).

 From equality (2.5) we obtain the formulas of Kramer














 n

n
xxx ,...,, 2

2

1

1
 (2.6)

Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 2.

Gauss method

The method of successive elimination of variables (Gauss method) is

based on the consistent lowering order of the system (2.3) by eliminating the

unknowns 121
,...,

n
xxx in linear equations This results in obtaining of a

triangular coefficients matrix)...,,2,1;...,,2,1(njmiaij  . This sequence of

procedures is the direct way exceptions variables. For its implementation must

consistently subtract from the first equation the other equations, multyplying

their left and right parts on the constant ratio, which is a share of the division of

constant coefficients
iijiij

aam / , where niijni ...,,2,1;1...,,2,1  . The

final system of equations on a direct way looks:



























)1()1(

)1()1(

1

)1(

)1(

2

)1(

2

)1(

22

)1(

22

111212111

......................................

...

......................................

......

......

n

nn

n

nn

k

nn

k

kn

k

kk

nnkk

nnkk

bxa

bxaxa

bxaxaxa

bxaxaxaxa

 (2.7)

where
jiijij

baaa
11

)1()2,(ji , wherein
11

1

1
a

a
b

j

j
)2(j ;

 25

)1(

2

)1(

2

)1()2(

jiijij
baaa )3,(ji , wherein

)2(

33

)2(

3)2(

3
a

a
b

j

j
)3(j , і.e.

From the system (2.7) the solutions are obtained trivially.

 Thus, the process of solving a linear system (2.3) by the method of Gauss

reduces to the construction of an equivalent system (2.7), which has a triangular

matrix. A necessary and sufficient condition for the applicability of the method

is that all the "leading elements" are not equal to zero. The process of finding

of the coefficients of the triangular system are usually called direct way, the

process of obtaining values of the unknowns - the back way.

 Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 3.

 3. Solving of SLE by iterative methods.

Method of simple iterations. Seidel method. Terms of convergence

 of iterative processes

Method of simple iterations

With a large number of unknowns in linear system the Gauss method

scheme becomes very difficult. In these conditions, to find the roots of the

system is sometimes convenient to use approximate numerical methods. One of

these methods - the method of iteration.

Let's we have a linear system



















.2211

22222121

11212111

,

,

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa









 (3.1)

By entering into consideration matrix

 26





















nnnn

n

n

aaa

aaa

aaa

A









21

22221

11211

 ,





















nx

x

x

x


2

1

,























nb

b

b

b


2

1

,

system (3.1) can be briefly written as the matrix equation

 .bAx  (3.1')

 Considering that the diagonal coefficients

0ija  ni ,,2,1 

let's solve the first equation of system (3.1) relative 1x , the second - a relatively

2x etc. Then get the equivalent system:



















 ,

,

,

11,2211

232312122

131321211

nnnnnnn

nn

nn

xxxx

xxxx

xxxx















 (3.2)

where ;
ii

i

i
a

b


ii

ij

ij
a

a
 ; wherein ji 

 and 0ij wherein ji   nji ,,2,1,  .

 After entering matrix





















nnnn

n

n

















21

22221

11211

 і





















n








2

1

,

system (3.2) we can write in matrix form:

 .xx   (3.2')

 The system (3.2) will be solved by successive approximations. As an

initial approximation let's take, for example, the right parts column )0(x .

 Then, gradually construct the vector- columns

)0()1(xx   (first approximation)

)1()2(xx   (second approximation) etc.

 27

 Generally, any thk )1(approximation is calculated by the formula:

 )(1 kk xx  

  .,2,1,0 k

(3.3)

 If the sequence of approximations   ,0x)1(x , ,   ,kx  has limit

)(lim k

k
xx


 ,

then the limit is a solution of system (3.2). Indeed, passing to the limit in

equality (3.3), we have:

 )(1 limlim k

k

k

k
xxx






  ,

or

xx   ,

i.e. the limit vector x is the solution of system (3.2'), and thus the system (3.1).

 Let's write the approximation formula in expanded form:

 






















.,2,1,0;,,1;0

,

1

)()1(

)0(

 kni

xx

x

ij

n

j

k

jiji

k

i

ii







 (3.3')

Note that sometimes more convenient to convert system (3.1) to the form

(3.2) so that coefficients ij were not zero.

Overall, with the system

 ij

n

j

ij bxa 
1

),...,2,1(ni 

you can put:

 ,)2()1(

ijijij aaa 

where 0)1(ija . Then the system is equivalent to the reduced system

 j

n

j

ijii xx 



1

),...,2,1(ni  ,

 28

where

)1(

ij

i
i

a

b
 ,

)1(

)2(

ii

ii
ij




  ,

)1(

ij

ij

ij



  wherein ji 

Therefore, in further considerations we will not, in general, assume that

0ij .

The method of successive approximations determined by formula (3.3) or

(3.3'), is called method of iterations. The iteration process (3.3) converges good,

ie the number of approximations necessary to obtain roots of system (3.1) with

the required accuracy, is little if elements of matrix  are small in absolute

value. In other words, the successful process of iterations will be if modules of

the diagonal coefficients of system (3.1) are large compared with modules non-

diagonal coefficients of the system (free members play no role).

 Remark. In applying the method of iterations it's no need for initial

approximation to accept a column of right parts. The convergence of the

iteration process depends on the properties of the matrix, and if this process

convergences with any choice of initial approximation of the home, it will be the

same to the same vector and with any other selection of initial approximation.

Therefore, in the initial vector iteration can be taken arbitrarily.

 Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 4.

Seidel method

 Seidel method is a modification of the method of iterations. Its main idea

is that in the calculation of ( +1)-th approximation of unknown ix are

considered previously calculated ( +1)-th approximation of unknown values

1x , 2x , …, 1ix .

 Let's we have reduced linear system

 



n

j

jijii xx
1

 (ni ,...,2,1).

 29

 Let's choose an arbitrary initial approximations of roots

)0(

1x ,
)0(

2x , …,
)0(

nx ,

 Onward, assuming that the  -th approximations of roots)(k

ix are known,

according to Seidel we will build ( +1)-th approximation of roots by the

following formulas:




 
n

j

k

jj

k xx
1

)(

11

)1(

1 ;




 
n

j

k

jj

kk xxx
2

)(

2

)1(

1212

)1(

2 ;

…………………………….








 
n

ij

k

jij

i

j

k

jiji

k

i xxx ;)(
1

1

1)1(

………………………………………………

)(
1

1

1)1(k

nnn

n

j

k

jnjn

k

i xxx   




 (,...2,1,0k).

Usually Seidel method gives better convergence than simple iteration

method, but generally speaking, it leads to more cumbersome calculations.

Seidel process may be convergence, even if the iteration process diverges.

 Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 5.

Terms of convergence of iterative processes

Let's we have reduced linear system:

   xx (3.4)

 30

where],[ij 

























n





.

.

.

1

- given matrix and vector and

























nx

x

x

x

.

.

2

1

 – unknown

vector.

Theorem. The process of iteration for the reduced linear system (3.4)

converges to its the only solution, if any matrix  norm less than unity, i.e. for

the iteration process

   1 kk xx   ,2,1k

( 0x - arbitrary) is a sufficient condition for convergence

 .1 (3.5)

Let)1(kx та)1()(kx k – two successive approximation solution of linear system

  xx . At 1p we have:

....)1()()1()2()()1()()(  pkpkkkkkkpk xxxxxxxx

 (3.6)

Since  )()1(mm xx and ,)1()(  mm xx then

)()1()()()1(  mmmm xxxx  and hence:

)()1()1()()()1(kkkmmmmm xxxxxx    .

Because of the formula (3.6) we obtain:

)()1()()1(1)()1()()(

1

1
... kkkkpkkkkp xxxxxxxx 


 




Passing in the last inequality to the limit wherein p→∞, we obtain:








1

)()1(

)(

kk

k
xx

xx (3.7)

at 1k  , or

 .
1

)1()()(


 kkk xxxx




 31

If in the process of calculation found that

,
1)1()(

q

q
xx kk 

 

where ,1 q то )(kxx , and, so )(k

ii xx

n). ., 2, 1, (i 

It is assumed that the successive approximation
 jx  kj ,...,1,0 calculated

accurately, that there are completely absent rounding error.

 From formula (3.7), using obtained estimates for norm of difference of

two successive approximations, we have:

.
1

)0()1()(xxxx

k

k 







In particular, if you choose ,)0(x то  )1(x and

.)0()1(  xx

So, .
1

1

)(







k

kxx

4. Transcendental equation with one variable. Separation of roots.

Clarification of roots (methods dichotomy, chords, tangents,

simple iterations)

Introductory provisions

 Solving nonlinear equations of the form f (x) = 0 often can be done in

the next two stages. In the first stage of a rough definition of the root. Of course

this can be done graphical manner. The second stage means the root clarify . It is

often useful following famous theorem on the existence of a root of continuous

function.

 Theorem. If the function f (x) is defined and continuous on the interval [a,

b], and on the ends of the segment takes values of different signs (so

    0bfaf), then in the interval (a, b) there is at least one root of the

 32

equation f (x) = 0 . In other words, in these conditions, there is a point c, a <c

<b, such that the equality f (p) = 0 justifies.

Solution of nonlinear equations

Separation of the roots

 From the geometric point of view the real root of the equation

   0xf (4.1)

 is the abscissa of the point of intersection graph of y = f (x) with the axis Ox

This note is used for graphic separation of roots of the equation (4.1) when this

equation has not closely roots, and the graph of y = f (x) constructed

accurately.

In practice, it is often convenient to replace the equation (4.1) with equivalent

equation

    xx   (4.2)

where functions  x and  x — are more easy than function  xf . Then,

construct graphics  xy  and  xy  , desired roots get as abscissa of the

point of intersection of these graphs.

Clarification of roots

Method dichotomy

 Consider method division-on-half - method dichotomy. The method

consists in the construction of iterative sequence of nested segments, the ends of

which are the monotonous sequence    
nn

ba , , and ...2,1,,  nba
nn

 ,

where  - the root of the transcendental equation (4.1) on the segment  ba, .

 The convergence of this method is slow. However, in any interval the

convergence is guaranteed.

 33

 We assume that   0af ,   0bf . Then we find the middle of segment

 ba, - point
2

1

ba 
 . Calculate the function  xf in this point. Choose

one of the obtained segments where the condition     0
1
faf or

    0
1

bff  justifies. The selected segment divide in half again by taking

111
,  baa or bba 

111
, , and then

2

11

2

ba 
 .

 Continuing of iterative process of division allows you to obtain a

sequence of nested segments, and .
11 nnnn

bbaa 


 Left ends of segments

form a monotonous sequence which in the limit represents the value
1

z :

 ,lim
1

za
n

n




and the right ends of segments form a monotonous sequence which in the limit

represents the value
2

z :

 .lim
2

zb
n

n




Obviously,

.

2

,

12

21

nnn

nn

ab
abzz

bzza






 (4.4)

This error does not exceed the length of the segment
nn

ab  and goes to zero by

increasing n according to the law geometric progression with denominator 1/2.

 Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 6,

7.

 Newton's method (tangent)

 Let's define the root of the transcendental equation (2.1) using Newton's

method (or the method of tangents). In figure 4.1 is shown a graphic scheme that

implements the method of Newton.

 34

Fig. 4.1. Geometric interpretation of Newton's method of solving the transcendental equation

With the graphical method we determine the initial approximation of root of the

transcendent equation   0xf . The equation of the tangent to the graph of

 xf in the point
0

x looks like

     ,)(
OOOK

xxxfxff 

(4.5)

 where)(
0

xf  - value of derivative of the function  xf at the point
0

x .

 At 0,
1


K

fxx . Then, from (4.5) we receive

 .
)(

)(
1

O

O

O
xf

xf
xx


 (4.6)

Continuing the process of constructing iterative sequence  
n

x , obtain the

following recurrent formula for the implementation of the iterative process of

approximation to the root of the transcendental equation

 ...2,1,0,
)(

)(
1







n
xf

xf
xx

n

n

nn
 (4.7)

Newton's method, implemented by (4.6), has a high rate of convergence, but it is

very sensitive to the choice of initial approximation
0

x . Figure 4.5 shows that

the choice as the initial approximation
01

x (point A on  xf , which is located

 35

further from the desired root  , than
0

x) leads at the first step to the "loss" the

point
A

x from limits of the interval  ba, .

If  baxMxfmxf ,,)(,0)( (m - the smallest value of derivative

)(xf  в  ba, ; M - the largest value of derivative in  ba,), then there such

 :    ba,min0 , that for any choice of initial approximation on the

interval    ba,,   there is an endless iterative sequence (4.6) and

this sequence convergences to the root of the transcendental equation

  0xf .

To evaluate the error of the n - th approximation
n

x you can use the formula

1

)(

m

xf
x

n

n
 (4.8)

where
1

m - the smallest value of the first derivative module)(xf  in the

interval  ba, .

 Iterations method

 One of the most important methods of numerical solution of

transcendental equations is the method of iterations (or - the method of

successive approximations or method of simple iterations).

 Transcendental equation (2.1)

   0xf

 present to the form

)(
1

xfx  (4.9)

 where xxfxf )()(
1 .

 Using graphical method, define the approximate value of the root
0

x from

the area of the function definition)(
1

xf and substitute it in the right side of

equation (4.9). Let's build sequence  
n

x of numbers, determined using iterative

formula

 36

 ,...2,1,0),(
11




nxfx
nn

Sequence  
n

x of numbers  
n

x is called iterative sequence. If there ,lim 


n
n

x

then passing in equity (4.9) to the limit and assuming function)(
1

xf is

continuous, we obtain:

  ,limlim
11 n

n
n

n
xfx





 або).(

1
 f

From the last equality comes, that  will be the root of the transcendental

equation (4.9), and therefore, and equation (4.1). Iterative process continues

until justifies the condition

 ,
1


 nn

xx (4.10)

 where  - задана похибка обчислення кореня  .

Before the proof of the convergence of iterative sequence dwell on Lipschitz

condition, which is as follows. Function  xf satisfies Lipschitz if there exists a

constant 1q , that any
21

, xx , owned segment  ba, , performed inequality

 .)()(
2121

xxqxfxf 

If the function of (4.1) satisfies (4.10), it is continuous on the interval  ba, .

Give argument x the increment x . Using the Lipschitz condition, we get the

confirmation of continuity of functions  xf on the interval  ba, .

.0lim

,

0





f

xf

x



Theorem on the convergence of iterative sequence can be formulated as follows.

Suppose that the function  xf
1

 s defined and differentiated in the interval  ba, ,

and all of its values are in],[ba . Then using Lipschitz conditions

1
)(

1  q
dx

xdf
 (at bxa ) we obtain, that the iteration process)(

11 nn
xfx 



convergences regardless of the initial value],[bax
O
 and the limit value

n
n

x


 lim is the only root of equation)(
1

xfx  on the interval  ba, .

 37

Let’s prove this statement. Take initial approximation solution of the

transcendental equation (4.1)
0

x on the interval],[  , which is remote

from the point  at a distance of no more than  ( 
O

x).Perform iterative

process using Lipschitz conditions and taking into account (4.9)

.

...

,)()(

,)()(

),()(),(

22

11212

111

11111









n

O

n

n

O

OO

OO

qxqx

qxqxqfxfx

qxqfxfx

fxfxxfx









 (4.11)

The theorem remains valid if the function)(
1

xf is defined and differentiated in

the interval   , . To assess the approximations let's use inequality

 .
1

11 nnn
xx

q

q
x 







If
2

1
q then come to (4.10). Finally

 .
1

 
n

x

 Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 8.

5. Systems of transcendental equations. The solution of two

nonlinear equations by Newton method

Systems of nonlinear equations

 Consider a system of nonlinear equations



















0),...,,(

........................

0),...,,(

0),...,,(

21

212

211

nn

n

n

xxxf

xxxf

xxxf

 (5.1)

 38

with real left parts.

Write shorter system (5.1). The set of arguments
n

xxx ,...,,
21

 can be seen as n -

dimensional column-vector x . Similarly, a set of functions
n

fff ,...,,
21

 is also

n -dimensional column-vector (vector function) f .

To solve the system (5.1') we will use the following method of successive

approximations. Suppose that k -th approximation was found

),...,,(
)()(

2

)(

1

)(k

n

kkk xxxx 

)()(kkxx  (5.2)

where),...,,(
)()(

2

)(

1

)(k

n

kkk   - amendment (error) of the root.

Substituting expression (5.2) in equation (5.1 '), we have:

 0)()()( kkxf  .

Assuming that the function)(xf continuously differentiated in some area,

which contains x and)(kx , we decompose the left side of the last equation in

powers of the small vector)(k , leaving only the linear terms of the series:

 0)()()()()()()()( kkkkk xfxfxf  (5.3)

From equalities (5.3) follows that if denote)(xW the Jacobi matrix of the

derivatives of system of functions n
fff ,...,,

21 relatively to variables

n
xxx ,...,,

21 , ie

 













j

i

x

f
xWxf)()(, nji ,...,2,1,  ,

the system (2.14 ') will be the linear system regarding modifications
)(k

i


ni ,...,2,1 with the matrix)(xW , and therefore formula (5.3) can be written as:

 0)()()()()( kkk xWxf  .

Hence, assuming that the matrix)()(kxW is nonsingular, we get:

)()()()(1)(kkk xfxW  .

 (5.3').

 39

So,

)()()()(1)()1(kkkk xfxWxx   ,...2,1p (5.4)

(5.4) – the Newton method.

For the initial approximation)0(x we can take rough approximation of the

desired root.

 The Newton method for a system of two equations

 Let
nn

yx , - approximated roots of the system of equations









0),(

0),(

yxG

yxF
 (5.5)

where F and G - continuously differentiated functions. Suppose

nn

hxx  ;
nn

kyy  ,

we have:









0),(),(),(

0),(),(),(

nnynnnxnnn

nnynnnxnnn

yxGkyxGhyxG

yxFkyxFhyxF
 (5.6)

If Jacobian

 0
),(),(

),(),(
),(






nnynnx

nnynnx

nn yxGyxG

yxFyxF
yxJ ,

then from system (5.6) we obtain

),(),(

),(),(

),(

1

nnynn

nnynn

nn

n yxGyxG

yxFyxF

yxJ
h




 , (5.7)

),(),(

),(),(

),(

1

nnnnx

nnnnx

nn

n
yxGyxG

yxFyxF

yxJ
k




 . (5.8)

 So we can put:

),(),(

),(),(

),(

1

nnynn

nnynn

nn

n yxGyxG

yxFyxF

yxJ
xx




 (5.9)

),(),(

),(),(

),(

1

nnnnx

nnnnx

nn

n
yxGyxG

yxFyxF

yxJ
yy




 (5.9')

 40

 ,...).2,1,0(n

The condition for stopping the iterative process will be the following:

 ),max(
nn

kh ,

where  - the given precision of solving the problem.

The initial values of roots are determined roughly approximated.

 Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 9.

 6. Differential equations. Methods for solving differential

equations. Systems of differential equations

Basic concepts

Differential equations - are such equations which containing derivatives

of the unknown function of one or more independent variables.

Equations containing derivatives by several independent variables, are

called differential equations with partial derivatives.

Equations containing derivatives of several independent variables, called

partial differential equations.

General view of the differential equation of n-th order is following:

  nyyyyxF ,...,,,,  = 0. (6.1)

This is an implicit form of differential equation. Explicitly form of the equation

of n-th order will be the equation which is solved relatively older derivate:

  .,...,,,, 1)( nn yyyyxfy (6.2)

 Let the variable x takes values in the interval I  R =(–∞, ∞). The solution

of the differential equation on the interval I is called such a differentiated in I

function)(xy  , after setting to the equation it rotates in equality for all xI

(identity on the set I). The chart of the solution of differential equations called

 41

the integral curve. The general solution of equation usually contains one free

numeric parameter and has the form

 y =  (x, C) (6.3)

where С — said parameter, φ — any function. Equality (6.3) determines the

family of functions, whichdepend on the parameter C. Allocation of single

solution from a family of solutions (6.3) can be satisfied if the known initial

value y(x0) = y0 for some x0 I.

The general solution of equation (6.1) or (6.2) is a family of functions of

form:

 y =  (x, C1,…,Cn), (6.4)

where C1,…,Cn — numeric parameters that are called arbitrary constant, and

each function of the family is a solution of equation (at some numerical

interval). Parameters С1,…,Сn can be determined by the initial conditions of the

form y(x0) = y10,…,y
(n–1)

(x0) = yn0.

There are situations where solutions of differential equations in explicit

form (6.3), (6.4) can not get, but can be found the so-called general integrals, or

general solutions of these equations. Thus the general integral differential of the

equation (6.1) or (6.2) is the equation which is not an identity

   0,...,,,,
21


n

CCCyx , (6.3a)

The function  is also called a general integral equation.

 Existence and uniqueness of solutions of differential equations of the first and

n-th order

 We further consider equations solved relatively senior derivative.

Consider the equation of the first order

 42

),(yxfy  .

Let function),(yxf is defined in some open area D of the plane XOY (Fig.

6.1), the interval I is a subset of D projection on the set R. Let in D is the point

M with coordinates (
00

, yx) (х0I).

Fig. 4.1. Geometric interpretation of solutions of differential equations

The problem: to find in the interval I the solution of the equation, integral curve

of which passes through the point M, i.e. to find a function y = φ (x), x  I,

satisfying the initial condition

0xxy  =  (x0) = y0. (6.5)

This problem is called the Cauchy problem. The following theorem formulated

conditions of existence and uniqueness of "local" solution to this problem.

 1 Existence and uniqueness. If the function),(yxf is defined and

continuous in D with its partial derivate
y

f




, then for any point M(x0, y0),

owned area D , exists the interval I, containing a point x0 and in which is defined

and the unique solution)(xy  of the equation, which satisfies the initial

condition (6.5).

Under the uniqueness of the solution is to understand the following: if

there are two solutions of the equation which are the same at the point x0, then

the solutions coincide on the common part of interval of their definition.

D M(x0;y0)

 0

 y=φ(x)

 43

 Geometrically in theorem states that under the conditions of the theorem

through each point inside the area D is the only integrated curve.

 Now formulate theorem which is the analog for previous for the

equation of n-th order solved relatively senior derivative (of the form (6.2)) with

initial conditions:

)1(

0

)1(

00 000
,...,''; 






 n

xx

n

xxxx
yyyyyy . (6.6)

 2 Existence and uniqueness. If the function),...,,,,(121 nzzzyxf , which

depends upon 1n variables x, y, z1,…, zn-1, defined and continuous in some

(n+1)-measurable area D together with its derivates
121

,...,
;

,,
















nz

f

z

f

z

f

y

f
,

then for any point),...,,,,()1(

0

"

0

'

000

nyyyyxM that belongs to the area

),...,,,,()1(

0

"

0

'

000

nyyyyxM D , exists the interval I, containing a point x0 and in

which is defined and the only solution)(xy  of the equation (6.2), that

satisfies the initial condition (6.6).

 The concept of uniqueness of the solution in this theorem is the same as in

the previous.

From 1, 2, it follows that on their conditions if the presence of general

solution of equation (6.2) in the form (6.4):

y =  (x,С1,…,Сn)

constants
n

CCC ,...,,
21

 are defined uniquely by initial conditions (6.6) for an

arbitrary vector (x0, y0, y0,…, y0
(n1)

)  D, i.e. the system of equations

)1(
0210

)1(

'
0210

0210

),...,,,(

...............................

;),...,,,('

;),...,,,(

 





n
n

n

n

n

yCCCx

yCCCx

yCCCx







 (6.7)

has a unique solution. Conversely, if for an arbitrary vector (x0,y0,y0,…, y0
(n1)

)

system (6.7) has a unique solution, then the Cauchy problem (6.2), (6.6) has a

unique solution for any point М D.

 44

 The conditions imposed in theorems 1.2 on the right sides of equations

(6.2) sufficient for the existence and uniqueness of solutions to the equation. For

the existence of local solutions (such referred to Theorem 2) is sufficient to

require continuity of f in the area D .

Methods for solving differential equations

Problem solving ordinary differential equations in the general case is

more complicated than the problem dealing with calculation of single integrals,

and therefore the fate of cases of explicitly integration here is much lower.

Numerical methods for solving differential equations can be divided into

two classes. One of them includes methods that use one starting value of

solution at every step, and the other methods use multiple values at every turn

(multistep methods). The last are characterized that on the basis of earlier got a

few values of function are built the new which are then specified with

differential equations.

The first class include Runge - Kutta methods, including methods of Euler

- Cauchy and trapezoids. The second include, for example, the method of

Adams, Adams-Krylov method.

 Consider first the Euler-Cauchy method.

 Let is given the differential equation

),(yxf
dx

dy
 , (6.8)

where (x, y) belongs to area G with the initial condition

 x = x0, y0 = y(x0) (6.8)

Method of constructing an approximate solution of the Cauchy problem (6.8),

(6.8) is based on the concept of so-called Euler polyline. Euler polyline is a

graph of piecewise linear function that is built based on the following rule. Let h

— small positive number (step of method). Consider a Cartesian plane point

with coordinates (x1, y1), where

x1 = x0 + h, y1 = y0 + hf (x0, y0).

 45

Note that, according to Taylor's formula, thanks to equality (6.8), (6.8) y1 -

value can be seen as approaching of the values of the solution y(x1) of Cauchy

problem. If the point (x1, y1) belongs to set G, then we continue to build on

inductive rule y і + 1 = y і + hf (x і, y і), і = 0, 1, 2,… . Each value yі is

seen as approximation to the value of the desired solution y at the point xі. So we

get a sequence of points (xі, yі) , і = 0,1,2,… , where all xі are situated on right

of the point x0. A similar construction, if necessary, carry out and on left of point

x0. According to this sequence we build piecewise-linear function

 y(x) = yі + f (xі, yі)(x  xі), x [xі, xі + 1] , і = 0, 1, 2,… ,

which (or its chart) is called the Euler polyline. There are several theories that

guarantee that under certain conditions the Euler polyline aims to the solution

of the Cauchy problem (3.10), (3.10), when the method step h aims to 0.

Graphical representation of the calculation scheme of the method Euler -

Cauchy shown in Fig. 6.2.

 Рис. 6.2. Calculation scheme of the Euler - Cauchy method

Let's given the differential equation

).,(yxf
dx

dy
 (6.8)

1 – Integral curve;

2 – Euler polyline

 46

Need to find an approximate solution (6.8) at the points with coordinates

nhxxhxxhxx
OnOO
 ,...2,

21
, where h - constant pitch;

O
x -

coordinate of start point of interval.

The initial condition)(,
OOO

xyyxx  . The approximate value of the first

derivative has the form

 ,1

h

yy

x

y

dx

dy
kk

k

k

k

k






  (6.9)

where 1...1,0  nk .

Equating (6.8) and (6.9), we obtain:

),,(1

kk

kk yxf
h

yy





from whence:

).,(
1 kkkk

yxhfyy 


 (6.10)

Using the recurrence formula (6.10) for points 1...1,0  nk we build the Euler

polyline 2, which replaces approximately the integral curve 1 (see. fig.6.2). The

gist of Euler-Cauchy method is that in the beginning of each interval  
1

,
kk

xx

we held tangent to the integral curve 1.

 The accuracy of the method Euler-Cauchy is small. The error of method is

proportional to
2h .

A variation of the method of Euler-Cauchy is the trapezoidal method. It is

implemented at each step using recurrent formula

 .),(,),(
2

1

















 kkkkkkkk
yxhfyhxfyxf

h
yy (6.11)

 The error of the trapezoidal method is proportional to
3h and it also

includes the general methods of Runge-Kutta.

 Multi-step solving of differential equations (finite-difference methods) are

based on the using of the rezults of solving of the previous steps. This can

increase the speed of computing. For the realization of the finite-difference

 47

methods for the numerical integration of differential equations need to know the

function and its derivatives at several points close to the original. Here we can

mark Picard method and the method of decomposition.

Systems of differential equations

 The aggregate of mutual relations



















0),...,,,...,,(

.................................

0),...,,,...,,(

0),...,,,...,,(

111

1112

1111

nn

n

n

yyyyxF

yyyyxF

yyyyxF

 (6.12)

where x - independent variable,
n

yyy ,...,,
21

 - unknown functions of x ,

n
FFF ,...,,

21 – known function, called a system of first order differential

equations. The solution of this system are functions)(),...,(),(
21

xyxyxy
n

,

which when substituted in (6.12) turn the system on identity.

If the system of differential equations (6.12) admits the possibility of solving

relatively derivatives, we get a system





















),...,,,(

...........................

),...,,,(

),...,,,(

21

212

2

211

1

nn

n

n

n

yyyxf
dx

dy

yyyxf
dx

dy

yyyxf
dx

dy

 (6.13)

which is called normal.

 An example of one normal equation of first order is

),(yxf
dx

dy
 .

This equation gives the field of directions in the plane yx, . The solution of the

equation is the one-parameter family of curves, located in one plane. If on this

 48

plane is given point),(
00

yx and functions),(yxf ,
y

f




 – continious, then the

equation has a unique solution that satisfies the initial conditions
00

)(yxy  .

 Now, take two equations













),,(

),,(

212

2

211

1

yyxf
dx

dy

yyxf
dx

dy

 or












),,(

),,(

2

1

zyxf
dx

dz

zyxf
dx

dy

.

Under certain conditions, we get the solution

)(
11

xyy  ;)(
22

xzy  .

This solutions can be regarded as parametric equations of the curve in the spatial

coordinate system zyx ,, .

 Thus, the solution of one equation can be represented as the curve in two-

dimensional space. Solution of two equations of the first order can be visualized

by the curve in three dimensions. Solution of n equations of the first order

forms a curve in the)1(n -dimensional space. These curves are called integral

curves.

 The numerical solution of systems of differential equations is carried out

similarly solving a differential equation.

 Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix

10.

 49

 7. The characteristic determinant and characteristic equation of

the matrix. The eigenvalues and eigenvectors of matrices

The characteristic determinant

and characteristic equation of the matrix

Let's we have a square matrix  ijAA  . Consider a linear transformation

 Axy  , (7.1)

where x and y — n-dimensional vectors of some n-dimensional space.

 Definitions. Nonzero vector called eigenvector of the matrix, if in the

result of the corresponding linear transformation this vector becomes the

collinear to it, i.e. the converted vector is different from the original only by

scalar multiplier.

In other words, a vector 0x is called eigenvector matrix A, if the matrix

transforms the vector x in the vector x :

 xAx (7.2)

 The number of equality (7.2) is called eigenvalues or characteristic

number of the matrix A, appropriate the eigenvector x.

 ,0)( xEA  (7.3)

Where matrix EA  called characteristic matrix. Equation (7.3) is a

linear homogeneous system that has nonzero solution if and only if the

determinant of the system is zero, ie when the condition

 .0)det( EA  (7.4)

The determinant (7.4) is called the characteristic determinant of matrix

A, and the equation (7.4) is called the characteristic equation of A. In expanded

form the characteristic equation (7.4) can be written as follows:

 0

...

............

...

...

21

22221

11211















nnnn

n

n

aaa

aaa

aaa

 (7.4’)

 50

or

 0)1()1(... 1

12

1

1

1  



n

n

n

nnnn  (7.5)

Polynom, which is standing in the left side of the equation (7.5) is called the

characteristic polynom of matrix A. Its coefficients),...,2,1(nii  are determined

by the following rules. Coefficient 1 is equal to the sum of the diagonal

elements of the matrix A, i.e. 



n

i

iia
1

1 . This number is called the track of

matrix A and denoted: SpA1 . Coefficient 2 is the sum of all the diagonal

minors of the second order of the matrix A. Generally, coefficient k is the sum

of all the diagonal minors of the k -th order of the matrix A . Finally, free term

n is equal to the determinant of the matrix A : .det An 

Characteristic equation (7.5) is an algebraic equation of n -th degree

relative  and has at least one real or complex root. Let)(,,, 21 nmm   -

different roots of equation (7.5). These roots are called eigenvalues or

characteristic numbers of the matrix, and the set of all eigenvalues are called the

spectrum of matrix A . Let's take any root j  and substitute it in equation

(7.4). Then we have 0)( xEA j or, in an expanded form,



















.0)(

,0)(

,0)(

2211

2222121

1212111

njnnnn

nnj

nnj

xaxaxa

xaxaxa

xaxaxa















 (7.6)

Since the determinant of the system (7.6) 0)det( EA j , then this system

has non-zero solutions which are the eigenvectors of matrix A corresponding to

its eigenvalues j . If the rank of the matrix jA  - is equal)(nrr  , then exist

rnk  linearly independent eigenvectors)()2()1(,,, kjjj xxx  , corresponding to j

.

 Remark. We can prove that the number of linearly independent

eigenvectors does not exceed the multiplicity of this root. It follows that if the

 51

roots of the characteristic equation (7.5) are different, each eigenvalues

corresponds to within a proportionality factor one and only one eigenvector.

Finding eigenvalues and eigenvectors matrix

 Introductory remarks

In solving theoretical and practical problems it is often necessary to

determine the eigenvalues of matrix, which means calculate the roots of its

characteristic equation   0det  EA  and find the corresponding

eigenvectors of matrix A. The second problem is more easier: if the roots of the

characteristic equation are known, then the calculation of eigenvectors reduced

to finding of some nonzero solutions of homogeneous linear systems.

Therefore, we will first deal with the first problem - calculation the roots of

characteristic equation.

 Here it is mainly used two methods:

 1) deployment of characteristic determinant to the polynom of n-th

degree:    EAD   det with following solving of the equation   0D with

one of the known approximated methods and

 2) an approximate determination of the roots of the characteristic equation

without prior deployment of characteristic determinant.

Deploying characteristic determinants

May have characteristic determinant of matrix  ijaA  as following:

    

















nnnn

n

n

aaa

aaa

aaa

EAD

...

............

...

...

det

21

22221

11211

Equating this determinant to zero, we obtain the characteristic equation

   0D .

If you want to find all the roots of the characteristic equation, it is advisable

to pre-disclose determinant.

Deploying the determinant, get the polynom of n-th degree:

 52

      ),1...(1 2

2

1

1 n

nnnnn
D   

where: 



n

a
1

1



 - the sum of the diagonal elements of the matrix A;








aa

aa



2 - the sum of all the diagonal minors of the second

order of the matrix A;











aaa

aaa

aaa




3 - the sum of all the diagonal minors of the

third order of the matrix A;

and finally, .det An 

 It is easy to ensure that the number of the diagonal minors of k- th order of

matrix A equals:

   

!

1...1

k

knnn
C k

n


  ....,2,1 nk 

Hence we find that the calculating of the coefficients of characteristic polynom

is equivalent to calculation of 12...21  nn

nnn CCC determinants of different

order. The latest problem, generally speaking, is technically difficult

implemented for large values of .n Therefore created special methods for

deployment of characteristic determinants.

O.M. Krylov method

 Let

     n

nn ppAED   1

1det  (7.7)

characteristic polynom (up to sign) of matrix A.

According to the identity of Hamilton-Cayley, matrix A turns in a zero its

characteristic polynom, so

 .01

1   EpApA n

nn 

 53

Take arbitrary nonzero vector
 

 

 

.
0

0

1

0



















ny

y

y 

Multiplying both parts of (7.8) on the right on
 0y , we get:

      .0001

1

0   ypyApyA n

nn  (7.8)

Let's set

   kk yyA 0

  nk ,,2,1  , (7.9)

then equation (7.8) takes the form:

      001

1   ypypy n

nn  (7.10)

or

     

     

     

 

 

 

,2

1

2

1

021

0

2

2

2

1

2

0

1

2

1

1

1









































































n

n

n

n

nn

n

n

n

n

nn

nn

y

y

y

p

p

p

yyy

yyy

yyy


 (7.10’)

where
 

 

 

 






















k

n

k

k

k

y

y

y

y

2

1

  .,,2,1,0 nk 

Thus, the vector equality (7.10) is equivalent to the system of equations:

        002

2

1

1 jjn

n

j

n

j yypypyp     .,2,1 nj 

from which, generally speaking, we can determine the unknown coefficients

nppp ,,, 21  .

So based on the formula (7.9):    1 kk Ayy  nk ,,2,1  , the coordinates

     k

n

kk yyy ,,, 21  of vector
 ky are sequentially calculated by the formula:

 54

   

   

     




































.,,2,1

,

,

1

1

1

12

1

01

niyay

yay

yay

n

j

n

jij

n

i

n

j

jiji

n

j

jiji




 (7.11)

Thus, according to by Krylov method, calculating of the coefficients of

the characteristic polynom (7.7) is reduced to solving a linear system of

equations (7.10), the coefficients of which are calculated by formulas (7.11).

And coordinates of the initial vector

 

 

  
















0

0

1

0

ny

y

y 

are arbitrary. If the system (7.10) has a unique solution, then its roots

nppp ,,, 21  are the characteristic polynomial (7.7) coefficients. This solution

can be found, for example, the method of Gauss. If the system (6) has no unique

solution, the problem is complicated. In this case, it is recommended to change

the initial vector.

Leverier method

This method of deployment of the characteristic determinant is based on

Newton formulas for sums of powers of the roots of algebraic equations.

Let

 det()E A  
1

1 ...n n

np p     (7.12)

— characteristic polynom of the matrix A ija   and 1 2, , , n   — complete

aggregate of its roots, where each root is repeated as many times as its

multiplicity.

 Suppose 1 2 ...k k k

k ns      ),...,2,1,0(nk  .

Then, at k ≤ n Newton's formulas justify:

 55

 1 1 1 1...k k k ks p s p s kp     ),...,2,1,0(nk  (7.13)

From here:

 

 

1 1

2 2 1 1

1 1 1 1

,

1
,

2

..

1
... .n n n n

p s

p s p s

p s p s p s
n

 

  

  





     


 (7.14)

If the sums 1 2, , , ns s s are known, then using formulas (7.14) we can step by

step determine the coefficients 1 2, , , np p p of the characteristic polynom (7.12).

The sums 1 2, , , ns s s are calculated as following: for 1s we have:

1 1 2 ... ns SpA       , i.e.

 1

1

.
n

ii

i

s a


 (7.15)

 Further, as we know, 1 2, ,...,k k k

n   are the eigenvalues of matrix
kA . So

1 2 ... ,k k k k

k ns SpA       that is, if  
,

kk

iiA a 
 

 then

()

1

.
n

k

k ii

i

s a


 (7.16)

Degrees 1k kA A A are calculated by direct multiplication.

Thus, the scheme of deployment of characteristic determinant by Leverier

method is very simple, namely:

- calculation of degrees
kA),...,2,1(nk  of matrix A,

- then are found the corresponding ks - sums of the elements of main

diagonals matrix kA ,

- and, finally, by formulas (7.14) determine the unknown coefficients ip

),...,2,1(ni  .

 56

Leverier method rather laborious because of counting the high degrees of

matrix. Its main advantage - easy scheme of calculation and the absence of

exceptional situations.

 8. Interpolation problem with simple nodes. Vector interpolation

problem with simple nodes

Formulation of the problem of interpolation

 In the most general case the interpolation problem consists in constructing

such a function)(xF , which in the given points
n

xxxx ,...,,
210

 gets values

)(),...(),(),(
210 n

xfxfxfxf of given function)(xf , and at other points of interval

 ba, approximates it. Function)(xF is called interpolating function towards

)(xf .

 Let in the interval  ba, are given 1n points
n

xxx ,...,,
10

, which are

called interpolation nodes, and the values of a function)(xf at these points

 .)(,...,)(,)(
1100 nn

yxfyxfyxf  (8.1)

We must construct a function)(xF , which belongs to the known class and

takes in the interpolation nodes the same values as),(xf i.e. such that

 .)(,...,)(,)(
1100 nn

yxFyxFyxF  (8.2)

Geometrically this means that you need to find the curve)(xFy  of a

certain type, which is passing through a given system of points),(
iii

yxM

,...)2,1,0(i

In this general formulation, the problem can have many solutions or do

not have any.

However, this task becomes unambiguous, if instead of an arbitrary

function)(xF we search the polynom)(xP
n

 of degree not greater than n ,

satisfying the condition (8.2), i.e. such as .)(,...,)(,)(
1100 nnnnn

yxPyxPyxP 

 57

The obtained interpolation formula)(xFy  is usually used for

calculating approximate values of the function)(xf for values of the argument

x that differs from interpolation nodes. Such operation is called the

interpolation of function)(xf . Wherein is considered interpolation in the

narrow sense, when  ,,
0 n

xxx i.e. values of x are intermediate between
0

x

and
n

x , and extrapolating, when  
n

xxx ,
0

 . Further, the term interpolation we

will use for the first and second operation.

 The standard interpolation by Lagrange

For any given interpolation nodes often use so-called Lagrange

interpolation formula.

Let in the interval],[ba are given 1n different values of argument:

n
xxxx ,...,,,

210
 and known for the function)(xfy  corresponding values:

 ,)(
00

yxf 
nn

yxfyxf )(,...,)(
11

.

We must build a polynomial)(xL
n

 of degree not higher n , that has in given

nodes
n

xxx ,...,,
10

 the same values as function)(xf , i.e. such as

iin

yxL )(),...,2,1,0(ni 

At first let's solve the partial task: to build a polynom)(xp
i

 such as

0)(
ii

xp при ij  і 1)(
ii

xp .

In short, these conditions can be written as follows:

 
ijii

xp )(








ijif

ijif

,0

,1
 (8.3)

where ij - Kronecker symbol.

 58

 Рис. 8.1. Interpolation polynom of Lagrange

As the sought-for polynom becomes zero at n points

,,...,,,...,,
1110 nii

xxxxx


 it looks as following:

),)...()()...()(()(1110 niiii xxxxxxxxxxCxp   (8.4)

where iC - constant coefficient. Putting
i

xx  in the formula (8.4) and

considering that ,1)(
ii

xp we get:

 .1))...()()...()((
1110


 niiiiiiii

xxxxxxxxxxC

From here:

 .
))...()()...()((

1

1110 niiiiiii

i
xxxxxxxxxx

C





Substituting this value in the formula (8.4), we have:

 .
))...()()...()((

))...()()...()((
)(

1110

1110

niiiiiii

nii
i

xxxxxxxxxx

xxxxxxxxxx
xp








 (8.5)

 Now let's solve the general problem: to find a polynomial)(xL
n

 that

satisfies the conditions specified above:
iin

yxL )(.

This polynom is as follows:

 .)()(
0





n

i
iin

yxpxL (8.6)

 y=f(x) M0

M1

o xo x1

yo

y1

x2

yn

Mn

 y=F(x)

 59

In fact, the first, obviously, the degree of the polynom)(xL
n

 is not higher

than n , and secondly, on condition (8.3) we have:

jjjj

n

i
jjijn

yyxpyxpxL 


)()()(
0

).,...,1,0(nj 

 The vector interpolation by Lagrange

Let in the interval  ba, are given point
k

t (interpolation nodes) and the

vectors  
kkk

yxv , as the values of some vector-function)(tf at these

points, i.e.

  .,......,1,0,,)(nkyxvtf
kkkk

 (8.7)

We must find a vector-function  )(),()(tytxtr  ,  ba,t , graph of which

contains points },{)(
jjjj

yxvtM  .

 In case of difference of nodes
kj

tt (при kj  ,),0, nkj  , the

interpolation problem (4.9) always has a unique solution:

 



n

s

s

sn
tptPtr

0

)()((8.8)

in the class
n

P of polynoms of degree n of one variable with vector coefficients

s
p . Finding of the polynomial 




n

s

s

sn
tpxP

0

)(is reduced to solving of

compatible systems of linear equations:

 



n

s
kkk

s

kskn
yxvtptP

0

},,{)(nk ,...,2,1,0 (8.9)

relatively to the vector-coefficients }.,......,,{
10 n

ppp

 But there's another way to solve this problem - you need to use the

Lagrange formula for vector interpolation problem:

 ,)(},{)()()(
00





n

s
ssss

n

s
ssn

tLyxtLvtLtP (8.10)

 60

where)(tL
s

 – elementary Lagrange polynomials defined by the formulas:

 .,0,
)).....()().....((

)).....()().....((
)(

110

110 ns
tttttttt

tttttttt
tL

nssssss

nss

ks









 (8.11)

 Software that implements the described algorithm has been developed . The

text of the main program procedures is given in the appendix 12.

9. Bezier curves on the plane and in space

Bernstein polynomials

 Let’s we have function     1,0Cxf  . Bernstein polynomial  xfbn ; - is

the polynom

       
 






















n

m

n

m

mnmm

nmnn xxC
n

m
f

n

m
fxpxfb

0 0

, 1:; ,  1;0x (9.1)

 At n the Bernstein polynomial  xfbn ; converges uniformly on

the interval  1;0 to the function  xf :

     0;lim 


xfxfbn
n

 (9.2)

Thus we have the estimate

     









n
fxfxfbn

1
;;  , (9.3)

Standard operator Bernstein      1,01,0: CCBn  acts by the formula:

          
 






















n

m

n

m

mnmm

nmnnn xxC
n

m
f

n

m
fxpxfbxfB

0 0

, 1;: . (9.4)

Function     bxxaxy  1 reflects the interval  1,0 to the interval  ba, , and

function  
ab

ay
yx




 performs inverse transformation the interval  ba, to the

interval  1,0 . These functions generate mutually inverse reflections

      1,0,: CbaC  і      baCC ,1,0: 

by formulas:

         xabafxfxf   , ,

 61

       













ab

ay
fyfyf  ,  bay , .

Bezier curves on the plane and its properties

Let's define basic Bernstein polynomials

   
 

    n,...,0k,1,0t,
kn

t1kt
!kn!k

!nkn
t1ktknCtk,np 








 .

Bezier curve is defined by vertices Pk (k = 0,1,…,n) of basic polygon,

which uniquely identifies the position of the curve in the plane or in space. To

construct a Bezier curve we using Bernstein polynomials and the vertices

Pk(xk,yk), k = 0,1,…,n, that is, Bezier curve looks like:

        10
0

1
0

,t,
n

k k
P

kn
t

k
t

k
nC

n

k k
Pt

n,k
ptP 







 (9.5)

where рn,k(t) - к-th function of Bernstein basis of order n, its maximum is

reached at t=k/n.

 Or in the the components:

     

     
 





























1,0,

0
1

0 ,

0
1

0 ,
tn

k k
y

kn
t

k
t

k
nC

n

k k
yt

kn
pty

n

k k
x

kn
t

k
t

k
nC

n

k k
xt

kn
ptx

 (9.6)

It is easy to see that each of these components can be count separately as

Bernstein polynomial for corresponding coordinate functions of the parameter t.

 For Bezier curve we have the following properties:

1.   00  (The point 0 is the starting point of Bezier curve).

2.   n 1 (The point 0 is the end point of Bezier curve).

3.    010  n (vector 01  determines the direction of the tangent to the

Bezier curve at the start point of the curve).

4.    11  nnn (vector 1 nn determines the direction of the tangent to

the Bezier curve at the end point of the curve).

5.    210 2)1(0   nn

6.    212)1(1    nnnnn

 62

 If we conjugate two segment Bezier curve with the basic polygons

n ,..., 10 and mQQQ ,..., 10 , then the condition of matching of last point of

the 1-st segment and the first point of 2-nd segment (condition coincidence of

segments) takes the form:

0Qn  . (9.7)

Conditions preservation slope tangents at the point of connection of segments

has the form:

    0110 QQmnQ nnn    . (9.8)

If you need to not change the length of the tangent, we get a condition of

tangential connection:

    0110 QQmnQ nnn   (9.9)

Similarly, there is a condition of conjugate of derivates of 2-nd order:

      210120 2121 QQQmmnnQ nnnn    (9.10)

Example. Let  1,10  ,  3,21  ,  3,42  ,  1,33  .

Then

)}(),({

}1,3{}3,4){1(3}3,2{)1(3}1,1{)1()(

,)1()(),1(3)1()(

,)1(3)1()(,)1()1()(,3

3223

33,322,311,300,3

3033

33,3

2122

32,3

2211

31,3

3300

30,3

tytx

ttttttbbbbt

tttCtbttttCtb

ttttCtbtttCtbn









Or by coordinates:

 









22

3323

)2/1(62/5166)(

5)1(1334)(

tttty

ttttttx

.

Features approximation using Bezier curves

 1. Degree (order) of curve is by one less than the number of vertices of the

base polygon. So, the only way to reduce the degree of curve - is to decrease of

the number of vertices of the base polygon.

 2. All the functions)(, tb kn are not equal to zero in the interval [0,1], so

changing one vertex of base polygon changes the entire curve.

 63

10. Linear and homogeneous coordinates on the plane

Basic concepts and definitions

Three points  21o A,A,A on a plane  are called points of general

location, if there is no line, which includes all these points. These points do not

coincide with each other and the line, passing through two of these points,

contains no third point.

Rapper А on the plane  we will call the ordered three points

 21o A,A,AA of general location on this plane .

Linear coordinates on the plane  , which are defined by rapper

A =  21o A,A,A or the system of linear coordinates, we will call a couple of

reflections: 2

A R :Crd  (two-dimensional coordinates of the point) and

 2

A R :Pnt (point with two-dimensional coordinates)

that satisfy the following conditions:

1) Reflections ACrd and APnt are reciprocal

 , X X))((CrdPnt

.R x x))((PntCrd

AA

2
AA





X

x або
 ,1 Crd Pnt

.1 Pnt Crd
AA

2RAA
 






2) Normalization performed

       
   ,1;0))(Crd ,0;1))(Crd ,0;0))(Crd

. 1;0Pnt ,)0;1(Pnt ,)0;0(Pnt
2A1A0A

2A1A0A





AAA

AAA

 Let on plane  are two systems of linear coordinates (SLC). The first (х-

coordinates) with rapper  21o A,A,AA , and the second (у-coordinates) – with

rapper  21o B,B,BB . Let the point Х  has coordinates  21, xxx  in the first

SLCand coordinates  21, yyy  in the second SLC. Then the reflection

22 RR : f and 22 RR : q , which are defined by formulas

2

BAAB R ,))((PntCrd:)()),((PntCrd:)( yxyyqxxxfy define replacement of

x-coordinates to y-coordinates and vice versa.

 64

Structure of the totality of systems of linear coordinates

 on the plane

Let on plane  there is a systems of linear coordinates with rapper А of

three points of general location і 22: RR  – affine species of the type

).0det,,,()(2

2   MRbxxx Then the reflection 11)(   yy is

inverse to reflection  and exists the rapper },,,{ 210 CCCC  for which the

following conditions satisfy:  ., CACA P n tP n tC r dC r d   Wherein

)}0,1({),(10   AA PntCPntC .

 Consequently, transferring the coordinates of points at a fixed SLC using

arbitrary reflection),0det,,,,)((: 2

222   MRbxxxRR

for which the transfer to fixed coordinates SLC via display the coordinates of an

arbitrary point in the SLC.

 Homogeneous coordinates on the plane

Homogeneous coordinates on the plane  - is a set of ordered triples of

numbers),0(},,{ 2

3

2

2

2

1321  xxxxxx for which the following equivalence is

introduced. The triple },,{ 321 xxx is equivalent to the triple

}),,,{},,({},,{ 321321321 yyyxxxyyy  if exists such t>0, for which

).3,2,1( ktxy kk

 Usually coordinates },{ 21 xx define a single class]1,,[21 xx . Reverse

requires consideration of two cases.

 Class],,[321 xxx at 03 x , i.e. consider triples).0(},,{ 3321 xxxx

Let ./,/ 32

*

231

*

1 xxxxxx 

At 03 x we have  }1,,{,,{ *

2

*

1321 xxxxx (points of front). So, front   –

is the set of classes].1,,[21 xx

At 03 x we have }1,,{},,{ *

2

*

1321 xxxxx  (points of rear front). So, rear front

 – is the set of classes]1,,[21 xx .

1) Class 2

21]0,,[Pxx  , i.e. each triple),0(}0,,{ 2

3

2

2

2

121  xxxxx

 65

defines on the plane the only point at infinity, which corresponds to a ray that

starts at the origin O. Always for each class]0[21xx we can consider normalized

triple).1(}0,,{ 2

2

2

12  xxxx Wherein vector 1

21 },{ Sxxx  defines the ray

.},0,,|)0,,{(1

2211

3

11 SxttxytxyRyypx 

 So, due to the determination of uniformity at 3R \ 0 for classes
321

xxx we

can assume that the third coordinate is)0(1
3
 x or 0 ()0

3
x , i.e. we have

following cases:

 1. At 1
3
x we have the front points




 2. At 1
3

x we have the points of rare front ,




3. At 0
3
x we have points at infinity of plane  or the skyline

0
 .

Mathematical coordinates and the coordinates of the device

 Consider on the plane  the Cartesian system of linear coordinates },({ yx -

coordinates) centered at point O(0,0).

 Definition. Mathematical window – is a rectangle ABCD on the plane,

(bypass circuit - counterclockwise) whose sides parallel to the axes OX and OY.

The lenthes of the rectangle sides determine the size |||||||| CDABrx  and

|||||||| ADBCry  of mathematical window along axes, respectively, OX and

OY.

 Let),(yx ssS – the center of the screen. Then for the vertices of the

rectangle of window we have the coordinates

}
2

,
2

{
y

y
x

x

r
s

r
s  (point А), }

2
,

2
{

y

y
x

x

r
s

r
s  (point B),

}
2

,
2

{
y

y
x

x

r
s

r
s  (point С), }

2
,

2
{

y

y
x

x

r
s

r
s  (point D).

 So, knowing the coordinates of the center of the screen S and the size of the

rectangle, we completely determine the mathematical window.

 Definition. On its part, with mathematical Cartesian SLC is related so-

called coordinate system of the device },,{  - a physical screen coordinate

 66

system which addresses the physical point (pixel) of screen. The origin of

coordinate of device system coincides with the top left corner of the

mathematical window (point D), direction of axes X and  coincide (direction -

right) and axes Y and  - is opposite (Y- upwards,  - downwards). Screen size

along the axes  and  is measured in pixels –
xm along the axis  and ym

along the axis  .

 Definition. Window of device or display area - is also a rectangle ABCD,

whose sides are parallel to the bounds of screen, and the points A, B, C, D

coincide with the boundary corner points of the screen. Sizes of sides of the

rectangle are specified in pixels and determine the size of the screen:

pixelspixelsx CDABm ||||||||  (width sweep) and p i x e l sp i x e l sy ADBCm ||||||||  (height

sweep). But we must note, that when programming the coordinates of points are

measured from zero (0 - is the first pixel, 1 - second pixel, etc.) then the last m-

th pixel will be addressed at the number m-1. Therefore, coordinates of the

vertices of the display area are: }1,0{ ym (point А), }1,1  yx mm (point B),

}0,1{ xm (point С), і {0,0} (point D).

 Formula changes {x, y} - coordinates to },{  - coordinates should look

like








.

,





yx

yx
 Therefore, after the substitution of mathematical

coordinates and corresponding device coordinates for points A, B, C (point D is

uniquely determined by points A, B, C, and so it can be neglected), obtain a

system of six linear equations with six unknowns),,,,,( . By solving

these equations, we obtain matching math coordinates and the coordinates of the

device while centering on the center),(21 ssS of the window:














).
2

1
(

),
2

1
(

yrsk

rsxk

yyy

xxx





 і

















.
2

1

,
2

1

y

yy

x

xx

k
rsy

k
rsx





 67

 where .
1

,
1

y

y

y

x

x

x
r

m
k

r

m
k





 But preserving the aspect ratio while displaying

on the screen, we must assume that the relation yxyx mmrr / are satisfied,

тобто
x

y

yy
m

m
rr  and we must calculate yk by the formula: .

1

y

x

x

y

y
m

m

r

m
k 




11. Basic conversion in the plane. The main symbol of affine

transformations

The concept of transformation on the plane

Let on the plane  we have some system of linear coordinates. For any

linear transformation A its mathematical expression in ordinary coordinates

has the form   2'

2

2221

1211' ,,,: RxxxxA 







 




 , i.e. the coordinate

expression in ordinary coordinates has the form  








.2222112

'

2

1221111

'

1 ,
:





xaxax

xaxax
A .

Substitution    3231

'

3

'

2

'

3

'

121

'

2

'

1 /,/,/,/,,, xxxxxxxxxxxx  , on condition, that

3

'

3 xx  , gives the coordinate expression of transformation in homogeneous

coordinates:

 














.

,

,

:

3

'

3

32222112

'

2

31221111

'

1

xx

xxxx

xxxx

A 



or we get the matrix expression of transformation in homogeneous coordinates:

         


















1

0

0

,,,,

21

2221

1211

321

'

3

'

2

'

1

'







xxxxxxAxx .

Let's consider transformation A, linear on plane  . The main and the full

symbols of transformation A we will call the matrices:

 68

  


























11

0

0

:,:)(

2

2221

1211

2221

1211







 A
aa

aa
Am

(here symbol '"m" means main). We shall also denote the symbols)(Am

and)(A as  mA і  A .

 The fixed point of transformation  :P is the point X , which

remains in place under the action of transformation P , i.e. it is a solution of

equation  XPX  .

Basic transformation on the plane

 1. Parallel transfer

Parallel transfer  :aT by vector а on the plane  can be defined in

different ways.

 Geometric definition. 1) At  0,00 a (zero vector) let   XXTX  0

' ,

i.e. 10 T (identity transformation on plane ); 2) At  0,00 a (nonzero

vector) for any point X from point X postpone segment 'XX , which has a

length of vector а. Wherein the direction of vector from point Х to point
'Х

coincides with the direction of vector а. Point
'Х is required   ': ХХТ а  .

 Vector definition. For any point Х let's define the point 'Х as the

only solution of the vector equation relative 'Х (vector expression of parallel

transfer):  аХаХХ ,,'  . Then we put:   ': ХХТ а  .

 Affine definition. If O - some fixed point in space, then the vector

expression can be written as affine expression of parallel transfer:

   ХаХХТа ,: ' . So, with this formula we find the coordinates of

vector 'Х and then the point Х ' and put: Та(Х) :=Х ' .

 Coordinate definition. Let on the plane  we have system of linear

coordinates. If as the origin of the coordinate system we choose 0РО  , then

from affine definition we receive the coordinate definition of parallel transfer:

 69

  










22

'

2

11

'

1
:

axx

axx
Ta ,

where    2121 ,, xxandaa - the coordinates of vector а and point Х in our

system of linear coordinates. I.e., with the last expression we find the

coordinates  2
'

1
' , xx of point 'X and put:   ': XXTa  .

 The set of transformations     aTShifts a  :: forms a commutative

group of parallel transfers relative composition  . Wherein: 1) There is a law of

multiplication baTTT baab ,, ; 2) The unit of group is the element 10 T ; 3)

Inverse to element
aT is the element aT .

2. Rotation

 Rotation 


:
)(

AR on the plane  around the point A by the angle

R (radian).

 Geometric definition 1) At Х=А (the center of rotation) we put:

   XXRX A  ' (i.e.   
ARFixA); 2) At AX  for any point X from

the point А postpone segment 'AX , which has a length of the segment

 AXAXAX ' and the angle between the segments AX і 'AX (taking into

account the direction of rotation) is equal     ', AXAX . The point 'X is

required. So, we put:     ': XXR A     ': XXRA 

 3. Axial homotetia

 The homotetia)0(:)( kH k

l  on the plane  relative to the line l

can be defined in different ways.

 Geometric definition. 1) At lX  (axis of symmetry) let’s put:

   XXH k

l  ; 2) At lX  we draw the line through the point X . This line

'

Xl , which is perpendicular to the line  lllXl XX  '' , . Let llA A  '' -

point of intersection of lines .' illX On the line '

Xl from point 'A (at k <0 - in the

opposite direction from point Х; at k >0 - on the same side as the point X) we

 70

postpone segment '' XA , which length is equal to the length of the segment XA' ,

which multiplied by number  XAkXAk '''0  .

 Vector definition. For any point X let’s define the point lA' , for

which the vector XA' has the smallest length: XAXA lA min'

(corresponding segment is perpendicular to the line l . It is clear that point 'A

depends on the line l and the point Х. Let's define the point 'Х as the only

solution of the vector equation relative 'Х :  XAXAkXA ,''' (vector

expression of the axial homotetia). Thus, first of all we find the point 'A (as a

basis of the perpendicular 'XA on the line l), from vector expression of the

axial homotetia, we find the vector '' XA and then – the point 'X . Then we put:

   ': XXH k

l  . Wherein, if X , then 'X .

 Affine definition. Let O - any point in space and the point 'A is found as

in vector expression of the axial homotetia. Then, at first, vector expression of

the axial homotetia can be written as an affine expression of the axial

homotecia:       XAkXkXH k

l '1': . So, from the affine expression of

the axial homotecia we find the vector 'X , and then the point ':' XOX  and

put:
   ': XXH k

l  . Wherein, if XA, , then 'X .

 Coordinate definition. Let on the plane  we have system of linear

coordinates (х - coordinates). If the point 0AO  , then from the affine

expression of the axial homotetia we can obtain the coordinate expression  k

lH .

But here we have some uncertainty: we don't know the dependence of the point

 '

21,' xxA upon the coordinates of point  21, xxX . But here we have some

uncertainty: we don’t know the dependence on the point  '

21,' xxA upon the

coordinates of point  21, xxX and the coefficients of the equality of line l . From

analytic geometry we know, that the point 'A satisfies the condition: if '

Xl - the

line passing through the point Х and is perpendicular to the line l , the point 'A

belongs to the line l . This allows you to find the coordinates of the point 'A over

 71

the coordinates  21, xx of X and normalized equation coefficients psc ,, of line

l :

   0: 21  psxcxl Rpsc  ,sin:,cos:  (11.1)

(here }sin,{cos},{ aascn  - orthogonal vector normal to the line l and a - the

angle of the vector normal to the axis 1OX). Really, let {
21 ,aa  } – unknown

coordinates of the point A . Then the condition lA  gives the first equation to

find the coordinates of the point A :

 021   pasac (11.2)

From analytic geometry we know, that the unit vector },{: scn  is perpendicular

to the line l , which is defined by the equation (11.1). Therefore parametric

equation of the line xl , which is perpendicular to the axis of homotecia l

and for which
x

lX  , looks like:








.

,

22

11

xts

xtc





Let at t :








.

,

22

11

xsa

xca





 Substituting these values in (11.2), we obtain:

)(0)()(2121 pxsxcpxssxcc   ,

so











spxsscxxpxsxcsa

cpscxxcxpxsxcca

2

2

12212

21

2

1211

)1()(

)1()(

Substituting this coordinates to the affine expression of the axial homotetia, we

get the coordinate expression of the axis homotecia for normalized line

equation:











.)1(][)1(

,)1()1(][
:)(

2

22

12

21

22

1)(

spkxkscscxkx

cpkscxkxskcx
H k

l (11.3)

Thus, we find with the formulas (9) the coordinates (21 , xx ) of the point X  and

put: XXH k

l
:)()(. Wherein if X , then X .

 72

 4. Axial symmetry

 Symmetry  :Sl relatively line l can also be defined in different

ways.

Geometric definition. 1) At lX  (the axis of symmetry) we put

AA
i

S )(. 2) At lX we hold a straight line xl through the point A , and

this line is perpendicular to the line l (l
x

l
x

lX  ,). Let llA A  - the

point of intersection of straight lines xl  і l . On the line xl from a point A in the

opposite direction from the point X the segment XA  is postponed. Its lenth is

equal to the lenth of segment ||)||||(|| XAXAXA  . The obtained point X  is

required (i.e., we put XXSl
:)().

Coordinate expression of the axis homotetia for the normalized line equation:











.)1(][)1(

,)1()1(][
:)(

2

22

12

21

22

1)(

spkxkscscxkx

cpkscxkxskcx
H k

l (11.4)

 Fixed points of transformations in the plane

A fixed point of transformation is determined using the coordinate

expression     Axx  in homogenious coordinates. It satisfies the condition

xx   0 . So, to find fixed points of the transformation A, we must find

positive eigenvalues of the full character  A . The corresponding eigenvectors

(i.e., non-zero solutions of equations   xAx ) there are the homogeneous

coordinates of fixed points.

 73

12. The compositions of affine transformations

on the plane

Transformations on the plane

 By this time, the points on the plane  were considered as fixed: for each

fixed point X in each system of linear coordinates from the set)Crd( were

considered different coordinates of this fixed point and we studied only

changesof x - coordinates on y - coordinates:

)R0,det,(2

2  xy or)(Crd)(Crdx A'A XX  , where X -

fixed point and A , 'A - two alterable rappers. But you can do the conversely:

fix (once for all) some system of linear coordinates with)Crd( and consider

the affine transformation of the plane  .

Let on the plane  we have system of linear coordinates (х - coordinates).

Linear transformation P :   is the transformation, which has the coordinate

expression of the type:   xx ' , where x ,
'x - vector-lines of coordinates of

corresponding points, 2

2 R,   . If we add here the condition 0det  ,

we get the definition of affine transformation. Coordinate expression of

transformation P can be written in such matrix way:   xxP ':)((for

ordinary coordinates).

 There is an inclusion)Lin()Aff(  . The converse is not true. For

example, constructing the projection in fixed point)(bB with coordinate

expression bxP ':)(is the linear transformation but it is not affine. But if the

linear transformation has an inverse one, then it is affine transformation

 The concept of composition of transformations

on the plane

Composition of transformations  :, BA - is the transformation

 :C , which is defined by formula:  XXBAXC)),((:)(. The

 74

composition of transformations A and B (order of transformations is essential)

we will denote as AB .

Note. The general line l equation is not normalized, i.e.

 032211  lxlxl , 02

2

2

1  ll (12.1)

When you divide (11) on 2

2

2

1 llL  obtain the normalized equation. The last

action is equivalent to substitution },,{},,{ 321

L

l

L

l

L

l
psc  in formulas (9).

Therefore, in the case of general line equation (11) we obtain the coordinate

expression of the axis homotetia for general line equation:









































2

2

2

1

32

22

2

2

1

2

2

2

1

12

2

2

1

21

2

2

2

2

1

31

22

2

2

1

31

12

2

2

1

2

1

1

)(

)1(1)1(

)1()1(

:)(

ll

llk
x

ll

kll
x

ll

llk
x

ll

llk
x

ll

llk
x

ll

kl
x

H k

l (12.2)

Note. The general line l equation is not normalized, i.e.

 032211  lxlxl , 02

2

2

1  ll (12.3)

When you divide (11) on 2

2

2

1 llL  obtain the normalized equation. The last

action is equivalent to substitution },,{},,{ 321

L

l

L

l

L

l
psc  in formulas:









































2

2

2

1

32

22

2

2

1

2

2

2

1

12

2

2

1

21

2

2

2

2

1

31

22

2

2

1

31

12

2

2

1

2

1

1

)(

)1(1)1(

)1()1(

:)(

ll

llk
x

ll

kll
x

ll

llk
x

ll

llk
x

ll

llk
x

ll

kl
x

H k

l (12.4)

Therefore, in the case of general line equation (11) we obtain the coordinate

expression of the axis homotetia for general line equation:

 75

13. Curves of the second order: representation by matrix and

invariants. Reduction of the second-order curve to the canonical

form. Classification of second-order curves

Curves of the second order

 General curve of the second order on the plane π with system of normal

y)(x, -coordinates is geometric set of points of the plane which coordinates

satisfy the equation:

 0) C B (A 0 F2Ey 2Dx Cy 2Bxy Ax y)L(x, 22222 

 (13.1)

 Note. Conditions 0 C B A 222  is equivalent to being in (13.1)

members of second order relative variables yx, .

 Note. The curve of the second order often defined as the algebraic curve

that in some affine coordinate system has the form (13.1). This definition, like

the previous one, is correct so that the change affine coordinate system to

another affine coordinate system by the formulas:

 0det,

2221

1211:,

22221
'

112
a x'
11












A

aa

aa
A

byaxay

byax
 (13.2)

the degree and type of equation (13.1) does not change.

 The curves of the second order are also called conic cross-sections

because historically they were concidered as sections of conical surfaces, in fact,

direct circular cone. For example,

 1. Circle (or point - degenerate circle) is a cross-section of direct circular

cone by plane that is perpendicular to the axis of the cone.

 2. Ellipse (or point - degenerate ellipse) is a cross-section of direct circular

cone by plane, sloped to the axis of the cone on angle over than angle between

the cone axis and generatrix of cone but less than 90 degrees.

 76

 3. Parabola is a cross-section of direct circular cone by plane, which is

parallel to some generatrix of the cone, thus generatrix not belong to this plane

(if the generatrix of cone belongs to the plane, we have the case of two lines

that degenerate in a one line). Thus the angle between plane and the axis of the

cone is equal to the angle between the axis of the cone and its generatrix.

 4. Hyperbole (or two lines, intersecting) is a cross-section of direct circular

cone by plane, sloped to the axis of the cone on angle less than angle between

the cone axis and generatrix of cone.

 Symmetric matrix



















FED

ECB

DBA

jk
lL : (13.3)

completely determines the curve (13.1) and corresponds homogeneous quadratic

form of the second order relative variables z)y,(x, .

       TzyxLzyxTzyx

FED

ECB

DBA

zyx

FzEyzDxzCyBxyAxzyxL





















222222),,(

 (13.4)

But the latter form defines a conical surface 0 z)y,L(x,  in space П with

coordinates },,{ zyx . So the curve (l) can be regarded as (spatial) projection on a

plane 0z parallel to the axis OZ (spatial) curve C, which is obtained at the

intersection of the conical surface 0 z)y,L(x,  with plane 1z .

The equation

    0222222),,( TzyxLzyxFzEyzDxzCyBxyAxzyxL

 (13.5)

can be seen as a second-order curve equation in homogeneous coordinates

 zyx . Therefore, the matrix α will be called the matrix of the quadratic form

(13.l) or matrix of curve (l) or matrix of homogeneous curve.

 77

Invariants of curve of the second order

 The invariant of second order curve (relative to change of normal

coordinates) is a function),,,,,(FEDCBAf of the coefficients FEDCBA ,,,,, of

equation (1) of this curve, which does not depend upon change of the normal

coordinates on the plane π.

For the equation (13.1) or equation (13.5) (or matrix α) let's denote:

 ,:,:
~

,:
CB

BA

F
FSFCASCAS   (13.6)

 ,:;:
FD

DA

FE

EC

CA
K

FED

ECB

DBA

 (13.7)

 .:
~

K
FD

DA

FE

EC

CB

BA

FCA
K   (13.8)

Here is used the following notation:
U

 - is (nonalgebraic) minor of element U

of matrix α, it is the determinant that we get from the determinant of matrix α,

expunging the row and column containing the element U.

The values CAS : and
CB

BA
: does not depend on changes in normal

coordinates in equation (13.1). Specifically, this values are invariant relatively

to change of normal coordinates .

The values
2:,: BAC

CB

BA
CAS   and

FEC

ECB

DBA

 : are called

respectively the invariants of the equation (13.1) of first, second and third order.

The value  K
FD

DA

FE

EC
K : is called semiinvariant of equation (13.1).

 78

Reducing of curve equation to the canonical form

The main problems of the theory of second-order curves are,

First, the classification of these curves (in terms of matrix L) and

secondly, the adductionof the equation of any such curve to the canonical form,

more precisely, obtaining change of coordinates at which the curve of the

second order equation takes the simplest (canonical) form.

 But our main goal - is to use second-order curves in the practical output to

the screen, and we had little formal grading curves of the second order, that is,

the knowledge that there affine coordinate system, which has, for example, an

ellipse. We additionally need to find how to calculate the matrix of change of

coordinates that performs construction curve equation to canonical form to be

able to carry out the withdrawal of the curve in the terminal window computer.

 Therefore, we will implement the dual approach using as a representation

of the curve in the form of (13.1) and the presentation of the curve (13.4) using

affine change of coordinates (ie homogeneous coordinates transformation

matrix). In this case, we will need the following statement.

 Statement. Let z y, x, - homogeneous affine coordinate system on the

plane and  ''' z ,y ,x - other homogeneous affine coordinate system on the same

plane. Let M - corresponding matrix change of homogeneous coordinates, i.e.,

     Mzyxzyx ''' or     1'''  Mzyxzyx (13.9)

 Then the curve equation (5) transformes into the equation

      ,0'''''''''''2'''2'''''2'''''' 222 
T

zyxCzyxzFzyEzxDyCyxBxAzyxL

 (13.10)

Where

     1111'
  TT

MLMMLML (13.11)

i.e. the matrix of curve at changing of the affine coordinates (13.9) is calculated

using the formula (13.11).

1. The matrix of parallel transfer of coordinates

 79



















1

010

001

nm

M sh   2, Rnm  (13.12)

with change of coordinates  nyymxx  ;     0,0, nmпри get

the change  yyxx  ; that actually is redefinition of coordinates.

2. The matrix of rotation around the origin















 



100

0

0

cs

sc

M rot (13.13)

by the angle 0,( sc
c

s
arctg і)122  sc with change of coordinates

 cysxysycxx  ; . This matrix is always orthogonal, that means

that its transposed coincides with the inverse: 1 MM T

Parallel shift of affine coordinate system

The formulas for change of coordinates, which we call parallel shift of affine

coordinates on the plane  , defined as (here  yx,) ( yx, - coordinates of the

point X in the original affine coordinate system;  yx, - coordinates of the

same point X in the new affine coordinate system):

 direct change:








nyy

mxx
 ;



















1

010

001

nm
sh

M ; (13.14)

 inverse change:










nyy

mxx
;





















1

010

001
1

nm
sh

M (13.15)

At the change of the coordinates (13.14), curve equation (1) takes the form:

)0222(,022222:),( CBAFyExDyCyxBxAyxL ,

 (13.16)

where

 80

















).;(22222

),,('

2

1

),,('

2

1

,,,

nmLFEnDmCnBmnAmF

nmyLECnBnE

nmxLDBnAmD

CCBBAA

 (13.17)

The following statement highlights the value
F

 in the reducing of a

general second-order curve equation to canonical form.

 Statement. 1. At 0
F

)
2

(BAC  there is always a change of

coordinates (13.15) which reduces (13.1) to the form in which there are no first

degrees variables x and y (i.e. 0 ED). Wherein:

F

D
m




 ,

F

En



 (13.18)

 The point  00 , yxM with coordinates

    





















F

E

F

Dnmyx ,,0,0 (13.19)

is the center of symmetry of the curve (in homogeneous coordinates

   FEDyx  ::1:
0

:0). Wherein the curve equation takes the form:

 0
2

2
2







CyBxyAx (13.20)

2. At 0
F

 (i.e.
2

BAC ) change of coordinates (13.15) which

reduces (13.1) to the form in which there are no first degrees variables x and

y , exists if and only if the conditions:

  




 2,,0,0,0 BACBDAEBECD

FED (13.21)

This is the condition of proportionality of the first two rows of matrix L.

Wherein is necessarily: 0 .

 81

 Rotation of affine coordinate system

 Let's introduce rotation around the origin {x, y} of coordinates, i.e. around

the point {x, y} = {0,0}, as the change of {x,y}- coordinates on },{ yx - coordinates

by the formulas ({x,y} – are the coordinates of point Х before rotation, },{ yx -

coordinates of point X , which corresponds point Х after rotation):

direct change:










0,0,

1, 22

sccysxy

scsycxx
 (13.22)

inverse change:










0,0,

1, 22

scycxsy

scysxcx
 (13.23)

Of course, the parameters c and s - are respectively cos and sin of some angle of

rotation).
2

,0(


  In this case, this rotation translates perpendicular axis x and

y to the perpendicular axis x and y represents the rotation by angle (radian)

toward the opposite direction clockwise, i.e. (13.22) and (13.23) can be written

as:

 direct change:










yxy

yxx





cossin

,sincos
 (13.24)

inverse change:










yxy

yxx





cossin

,sincos
 (13.25)

 At 0B change of coordinates, at which the product of variables in the

curve equation (13.1) disappears is determined by changing coordinates

(13.22), where:

   








 








 


d

signBCA
s

d

signBCA
c 1

2

1
,1

2

1
, (13.26)

 82

Here   44 222
 SBCAd . If we put  sin,cos  bc (i.e. choose the

change of coordinates in the form (13.24)), then the angle  can be obtained by

formula:
  dsignBCA

B
arctg




2
 , (13.27)

or by formula (at CA ):

 CA
CA

B
arctg 


 ,

2

2

1
 .

Reduction of curve equation to the canonical form

 Reduction of curve equation to the canonical form will be carried out in

several steps.

 Step 1. As has been proved, exists a change of homogeneous coordinates,

which combines the center of coordinates with the center of the curve

    1

''' ,,,, M  with matrix






















































FED

F

F

ED

M 00

00

1

010

001

1



 , (13.28)

for which the curve equation in homogeneous coordinates takes the form:

 ,02 2'2'''2' 


 


 CBA (13.29)

or in ordinary coordinates:

 02 2'''2' 





CyyBxAx . (13.30)

 Step 2. Construct the change of homogeneous coordinate

    2

''' ,,,, M  , i.e. matrix 2M by the following rule:

 1. At 0B we put


















100

010

001

:2M .

 2. At 0B we put

 83






































 








 









 








 




100

0
)(

1
2

1)(
1

2

1

0
)(

1
2

1)(
1

2

1

:2
d

signBCA

d

signBCA

d

signBCA

d

signBCA

M , (13.31)

where 4)(222  SBBAd .

 Thus, at the transformation of homogeneous coordinates

M },,{},,{  with matrix 21 MMM  it will be always 0B in the

curve equation, i.e. we obtain the equation of the curve:

 0
22

 FyCxA , (13.32)

or in homogeneous coordinates:

 0222




 


 CA . (13.33)

 In the case when 0 , 0B the change of coordinates (rotation around

the origin of coordinates with parameters c and s, which are obtained by

formulas (13.26), the equation (13.1) changes by formulas (13.32) or (13.33),

where 0
_

B . Wherein, the invariants of the curve are not changed. So, in new

coordinates






__

, yx we receive the previous case  
_

 і 0
_

B .

 In the case when 0 always will be 0S . Really, at 0S we have









0

02

CA

BAC
 →









022 BA

AC
 → 0 CBA , which is impossible. So, 0S at

0 . But then there are also equivalence 0


S
 ↔ 0S , 0



S
 ↔ 0S ,

0


S
 ↔ 0S .

 84

 14. Output of second-order curves on display. Method of

cross-section. Iterative algorithms displaying the curves of the

second order

Construction of iterative scheme

 Let's consider algorithms display the curves of the second order by the

example of hyperbole. To implement iterative algorithm we will build the

iterative scheme. For this let's parametrize the curve:













sin

cos

by

ax

where  - is parameter, angle.

Next we need the following formulas for hyperbolic functions of sum of

arguments:

.)(

,)(

shyshxchychxyxch

shychxchyshxyxsh





Let's transform in recurrence relations:

.)(

,)(

,)1(

11

11

001

kkkkkkk

kkkkkkk

kk

vhchuhshhshchhchshhshshv

uhshuhchhshshhchchhchchu

hhkhhk



















That is, we have the following iterative scheme

   

   







 hkkkk Hvuvu

vu

1,,1,,

,1,0,11,,

11

00
,



















100

0

0

: hchhsh

hshhch

H h . (14.1)

Wherein 1det 22  hshhchHh ;

 hH - hyperbolic rotation matrix.

 (Note, that similar matrix can be found for an ellipse:



















100

0cossin

0sincos

: hh

hh

Eh (14.2)

 - elliptical rotation matrix.)

 85

 If equation (1) of the curve of second order by change of coordinates

    Mvuyx  1,,1,, reduces to equation in canonical form, then the coordinates

of vertices of the polyline which approximates the curve in  yx, - coordinates

will be equal     Mvuyx kkkk  1,,1,, . Hence we obtain the following iterative

scheme for the coordinates of the vertices:

   
       


















MHMM

MyxMHvuMvuyx

Myx

hh

hkkhkkkkkk

1

1111

00

:

,1,,1,,1,,:1,,

,1,0,1:1,,

Wherein 1detdetdetdet 1   MHMM hh , i.e. change of coordinates with matrix

hM preserves the area of figures.

 Matrix hM can be calculated prior to the cycle of calculation of sequence

of points  kk yx , , since it does not depend on k .

 In the case of hyperbole that is not degenerate)0,0( matrix hM

determines the hyperbolic transformation of plane which is defined by

hyperbole, and it is the hyperbolic rotation of plane.

 Iterative algorithm for displaying the arc

of hyperbole (ellipse)

1) Entrance:

- Taking coefficients A, B, C, D, E, F of curve equation (13.1).

- Finding and invariants  and  (see formula (13.6) and (13.7)). Test

conditions 0,0  (non-degenerate hyperbole). If these conditions are not

met, then go to Exit.

- Finding the changes of coordinates with matrix M that is not

degenerate, of size 33 , at which equation (13.1) is reduced to canonical form.

 Matrix M can be found as the product of matrix М1 from formula (13.28) and

matrix М2 from formula (13.31).

 86

- Obtaining values of the initial
n and final

k angles of parameter

)(kn   .

- Getting of the number of sides (or vertices) 2m of polyline by which

we approximate the desired curve.

- Initial installation (before arithmetic cycle):

 - Count 0



m

h kn 
.

- Count matrix hH by the formula (34) (in the case of an ellipse - corresponding

formula (13.33)) and then the matrix MHMM hh

1 .

- Count the coordinates     Mshchyx nn  1,,1,, 00  of the initial point 0A .

2) - The beginning of the arithmetic cycle from 0n to mn  (from the

beginning of the cycle 0:n , when the current cycle 1:  nn). Further test

of conditions mn  , if performed, so - go to step 1, if not - go to Exit. -

Calculation of the coordinates     hnnnn Myxyx  1,,1,, 11 of the current point

1nA .

 - Display of the interval  1, nn AA in the window.

3) The end of the arithmetic cycle by n (transition at the Beginning of the

arithmetic cycle).

4) Exit.

Іterative algorithm for displaying parabola

Let 0N - natural numbers describing the number of vertices

(approximately NK ) approximating polyline. Let’s put:















kk

kk

k

tv

Nktu

hkTt

,...,1,0,

,

2

Transform in recurrence relations:

 hthhkThkTt kk )1(1 ,

)22(222

11 huhuhhtttu kkkkkk   ,

 87

 hvhttv kkkk   11
,

That is, in the homogeneous coordinates we have the desired recurrence

relations:









 hnnnn Pvuvu

TTvu

]1,,[]1,,[

],1,,[]1,,[

11

2

00

 where



















1

012

001

2 hh

hPh - матриця параболічного обертання.

Wherein 1det hP .

We have the following iterative scheme:









 hnnnn Myxyx

MTTyx

]1,,[]1,,[

,]1,,[]1,,[

11

2

00

where MPMM hh

1 .

Matrix hM defines the parabolic transformation of the plane. As in previous

cases, this matrix can be calculated before the main calculating cycle.

 Thus, we obtain an iterative algorithm for displaying the arc of a parabola

1) Entrance:

- Taking the value p - the parabola parameter)0(p .

- Taking the value 0h .

- Taking the values of coordinates
2

00 , TyTx  of the initial (start)

point 0A .

- Taking the number 2m , which is the number of the parties (or vertices)

of polyline by which we approximate the desired curve.

2) Initial installation (before arithmetic cycle):

- Calculation of matrix hM (similar to the case of the ellipse or hyperbola).

3) The beginning of the arithmetic cycle from 0n to 1 mn (When

entering in the cycle 0n . In the cycle 1:  nn). Further test of conditions

mn  , if performed, so - go to step 1, if not - go to Exit.

 88

- Calculation of the coordinates     hnnnn Myxyx  1,,1,, 11 of the current

point 1nA .

- Display of the interval  1, nn AA in the window

- The end of the arithmetic cycle by n (transition at the Beginning of the

arithmetic cycle).

4) Exit.

Method of cross-sections

Preliminary considerations indicate how to implement output curve of the

second order in the shortest time and in the most rational way. But often there

are cases when the output curve of the second order on the screen (window)

terminal could spend a lot of time, that is, the time performance of output curve

is not critical. In this case, after finding the type of curve by invariants method,

for displaying an ellipse, parabola or hyperbole can be used the cross-sections

method.

 If we know the mathematical boundaries of window (nx - left, nx - right,

ny - lower, ny - upper) and the window size yx MM  (pixels), the displaying of

curve (1) on the screen can be made by the individual pixels.

I. The case 0,0  CA .

In this case, equation (1) has the general form. So we get the following

algorithm:

1) Calculate step xлn Mxxx /)( .

2) The beginning of the first arithmetic cycle from 0j tо 1 xMj .

3) Calculate the value xjxx лj )1(.

4) Consider the equation (1), as equation relatively y if jxx  (cross-

section parallel to axis y), i.e. the equation 02)(2 22  FDxAxyEBxCy jjj

and find the discriminant)2)()(22 FDxAxCEBxD jj  .

 89

5) At 0D calculate 1y and 2y by the formulas for the roots of quadratic

equation:

C

DEBx
y

j 


)(
1 ,

C

DEBx
y

j 


)(
2

and carry out displaying to the screen of pixels with coordinates },{ 1yx j and

},{ 2yx j .

6) The end of the first arithmetic cycle.

7) Calculate step yнв Myyy /)( .

8) The beginning of the second arithmetic cycle from 1j tо 1 yMj

9) Calculate values yjyy нj )1(.

10) Consider the equation (1), as equation relatively x if jyy  (cross-

section parallel to axis x), i.e. the equation 02)(2 22  FEyCyxDByAx jjj

and find the discriminant)2()(22 FExCyADByD jjj  .

11) At 0D calculate 1x and 2x by the formulas for the roots of quadratic

equation:

A

DDBy
x

j 


)(
1 ,

A

DDBy
x

j 


)(
2

12) The end of the second arithmetic cycle.

13) The end of the algorithm.

 II. The case 0,0  CA .

 In this case the equation (1) takes the form 02)(2 2  FEyCyxDBy .

So we get the following algorithm:

1) Calculate step унв Муyy /)( .

2) The beginning of the first arithmetic cycle from 0j tо 1 yMj

3) Calculate values yjyy нj )1(

 90

4) At 0 DBy j calculate
)(2

22

DBy

FEyCy
x

j

jj




 and carry out displaying to the

screen of pixels with coordinates },{ jyx

5) The end of the first arithmetic cycle.

6) Calculate step xлп Mххx /)(

7) The beginning of the second arithmetic cycle from 0j tо 1 xMj

8) Calculate values xjхx лj )1(

9) Consider the equation (1), as equation relatively y if jxx  (cross-section

parallel to axis y), тобто рівняння 02)(22  FDxyEBxCy jj і знаходимо

дискримінант)2()(2 FDxCEBxD jj  . i.e. the equation

02)(2 22  FDxAxyEBxCy jjj and find the discriminant

)2)()(22 FDxAxCEBxD jj  .

10) At 0D calculate 1y and 2y by the formulas for the roots of quadratic

equation:

C

DEBx
y

j 


)(
1 ,

C

DEBx
y

j 


)(
2

and carry out displaying to the screen of pixels with coordinates },{ 1yx j and

},{ 2yx j .

11) The end of the first arithmetic cycle.

12) Calculate step yнв Myyy /)( .

13) The beginning of the second arithmetic cycle from 1j tо 1 yMj

14) Calculate values yjyy нj )1(.

15) Consider the equation (1), as equation relatively x if jyy  (cross-

section parallel to axis x), i.e. the equation 02)(2 22  FEyCyxDByAx jjj

and find the discriminant)2()(22 FExCyADByD jjj  .

 91

16) At 0D calculate 1x and 2x by the formulas for the roots of quadratic

equation:

A

DDBy
x

j 


)(
1 ,

A

DDBy
x

j 


)(
2

17) The end of the second arithmetic cycle.

18) The end of the algorithm.

 So, in cases when the output curve of the second order on the

screen (window) of terminal could spend a lot of time, that is, the

time performance of output curve is not critical, we carried out output the

curve. In this case, after finding the type of curve by invariants method, for

displaying an ellipse, parabola or hyperbole can be used the cross-sections

method.

 A number of important industrial and economic problems (not just

light industry) naturally united not so much the content as methods for

their solution. As a result of studying "Numerical Methods" we knew the

application of mathematical methods for solving complex problems using

modern computers.

 92

PART II. PRACTICAL APPLICATION AND SOFTWARE

1. Mathematical modelling of dispersed phase

drop deformation in nano-filled polyner mixture melts

Key provisions

The purpose was to study using mathematical modeling method of the

influence of nano-additive on dispersed phase component drop deformation

during polymer dispersion melt flow in the entry area of forming hole.

To study the process of drop deformation in a polymer dispersion the

mathematical model developed on the standpoint of structural-continual

approach was improved. The model takes into account the main provisions of

classical fluid mechanics and changes in the structure of the dispersed phase

during its flowing.

It is shown that the modified mathematical model of deformation of the

polymer dispersed phase drop adequately describes the process of

structureformation during real nano-filled polymer compositions flowing. The

values of polypropylene (PP) drops deformation, calculated using the model,

correlate the experimental results: inter-phase tension reduce leads to drops in

deformation increase and to the average diameter of PP microfibers reduction.

The mathematical model of deformation of dispersed phase polymer drop

was improved in order to carry out for theoretical research of nano-filled

polymer mixtures.

Using the developed mathematical model will accelerate researches and

reduce material and energy costs of them.

Introduction

One promising way modification of polymers and their blends are

creating nanocomposites, in which a set of desired properties is achieved

through the optimal combination of components. The use of fillers of different

sizes, shapes and chemical nature allows to improve mechanical properties of

 93

materials and provide them with new functional characteristics

(incombustibility, bactericidal, conductivity, sorption capacity, etc.). Herewith

essential is the ability of nanoparticles (NP) surface be getting wet by polymer

and the nature and degree of interaction between the NP and macromolecules

polymer on the interphase [1,2]. It is shown that the introduction of silica

nanoparticles in a mixture melt of polypropylene / copoliamide (PP / SPA)

allows to adjust the processes of structureformation of PP in the SPA matrix and

thus improve the structure of the filter material (FM), obtained in processing of

the said mixture. These filters combine high cleaning efficiency and

productivity, and the presence of nanofiller in the FM structure provides them

bactericidal properties[2]. To create new nanomaterials and regulation of their

properties is necessary conducting basic research and the establishment of

appropriate laws.

Problem

Polymers are generally thermodynamically incompatible with each other

in the melt, but the section on individual phases prevents high viscosity of the

components. Shear flow contributes to the formation of different types of

structures by the component of dispersed phase: liquid cylinders (jets), layers,

drops, etc To describe the rheological behavior of polymer dispersion melts are

used the laws of classical mechanics, same as for modeling systems such as

suspensions and emulsions [3]. At the same time a polymer mixture is a special

class of colloidal dispersions of the "polymer in the polymer." An important

difference is formation between the two its components interphase transition

layer whose properties are very different from those of the characteristics of

polymer melt in volume. In nano-filled polymer melts an interphase layer

around the nanoparticles is formed as well at the interphase filler / polymer and

its thickness ranges (0,0004 ‚ 0,16) mm [4]. Thus, depending on the degree of

affinity between the polymer and additive nanoparticles can be localized in the

bulk melt or at the interface and influence the magnitude of surface tension.

 94

Purpose ─ studying by the mathematical modeling of the influence of

nano-additives on deformation of dispersed phase component drop during

polymer composition melt flow.

The main material

Study of flow patterns and structureformation in polymer dispersions

subject of many articles and books. However, because of the complexity of such

systems research experimental approaches outweigh theoretical. Today received

a number of empirical regularities and mathematical models that describe with

sufficient accuracy the behavior of such systems. In [5] from the standpoint of

structural and continual approach developed a mathematical model that allows

to determine the value of drop deformation depending on the volume

concentration and the rheological properties of the components (viscosity of the

dispersed phase and dispersion medium, their interrelation and flexibility). The

advantage of this model is that it takes into account the main provisions of

continuum mechanics (integrity protection, continuity of functions, describing

its movement and state) and the particular structure of the dispersed phase. Form

drops - is ellipsoid of revolution, which changes size during the interaction with

its dispersion medium but retains volume. Deformation drops depending on the

orientation in the flow accounted for using the tensor strain rate uniaxial tension.

The model is a system of differential equations in dimensionless variables has

the form:





















))sin32)((
2

(
2

3

)2sin(
4

3

0

2

3
3
4

2

021

3







qr
u

q

q

u







 (1.1)

where: φ, θ - angles that define the orientation of the drop in the stream;

 u - the intensity of the current uniaxial stretching;

 q - the value of deformation (stretching dimensionless);

 95

 λ1, λ2, λ3 - values that take into account the rheological characteristics of the

components.

In the above equation point means complete original in time.

 It is known that solid fillers cause thickening thixotropic effect, which

leads to an increase of viscosity of the polymer melt. In carrying out

modifications of polymer mixture melts an additive is usually pre-injected into

one component. In determining the value of drop deformation using model (1)

the influence of nano-additive can be taken into account due to changes in melt

viscosity of the dispersed phase and dispersion medium, using Einstein's

formula for dilute suspensions:

 ηЕ = η0 (1+2,5V) (1.2)

where: η0 - viscosity of the medium; V - volume concentration of suspended

particles.

 Experimental studies show that for compositions with a low content of

nano-additive (0,05 ‚ 3,0) masses. %, the viscosity increases slightly within the

error and it coincides with the effective viscosity (ηE) defined by the formula

(1.2). Calculations made using the model showed that the concentration of nano-

additive (0,05 ‚ 3,0) masses. % virtually no effect on the amount of strain drops

of the dispersed phase. However, this is inconsistent with research on the impact

of nanofillers on micro and macro-rheological processes in polymer mixture

melt flowing. Thus, in [2] is shown that the introduction of (0,1 ‚ 3,0) masses.

% silica in a mixture melt of polypropylene / co-poliamide improves

fiberization PP in SPA matrix: an average microfibers diameter reduced and

their uniformity of distribution by diameters increasing. The authors attribute

this to the influence of nanoparticles on the interphase phenomena, namely with

decreasing values of surface tension at the interphase.

 From classic fundamental ratios that describe thermodynamic equilibrium

in Low-molecular dispersion system it follows that the dispersion medium in a

flow is acting on a drop dispersed phase therein with a force proportional to

 96

the gradient of shear velocity and medium viscosity and besides this is a

function of the ratio of viscosities components. A drop of polymer dispersed

phase reacts on deformation with force [6]:

 Тγ = 2 γαβ / r (1.3)

where: γαβ - interphase tension; r - the radius of the drop.

 At the same time, the ability to drop deformation is largely determined by

its elasticity. In mathematical model (1.1) resistance of drop on its deformation

is taken into account due to the value of the elastic modulus G, which is

included into the relation to determine the rheological function λ1:

)1(

)32(

)1(2

''

0

2

00

''

0

2

1 MФ

ab

q

q

a

a
Gab
















 (1.4)

 where: a, b, a0, b0 - ellipsoid axis in deformed and undeformed state;

 G, F - modulus of elasticity and volume concentration of the

dispersed phase;

 μ, η - viscosity of the dispersion medium and dispersed phase;

 





))(22(6

5
*

)32(

4
M

22'

000''

0

22 ba
abab








  
)2(2

1

24

1
*

))(22)(2(

)22(100

00

22'

00

22'

00000

00

2'

0

2'

0













aaba

aa

The values of α0, β0, 0а , β0΄, αо΄΄, βо΄΄ are obtained in [3].

To assess the effect of the interfacial tension on the ability to deformation

of the dispersed phase drops in the expression for the determination of

rheological function λ1 were made changes based on the fact that G = Tγ. With

the balance of the elastic power inside (G) and resistance (Tγ) equation to

determine λ1 will look like:

 97

)1(

)32(

2

''

0

2

3
2

00

''

0

2

1 MФ

ab

q
a

a

R
ab





















 (1.5)

where: a0 - ellipsoid axis, which volume is equivalent to the volume of sphere

drop with radius r.

 The system of differential equations (1) was solved numerically by the

Runge-Kutta method using specially written program in Delphi environment

with Object Pascal language. Modified model tested for adequacy, ie the ability

to predict the results of research in some area with the required accuracy by

comparing the amount of strain drops obtained when using it with experimental

data. This was used in the investigation results of about 1.0. methyl silica %

additive (MC) on the value of interfacial tension (γαβ) and average diameter

jets (micro) mixtures PE / spa and polypropylene / polyvinyl alcohol (PE / PVA)

of the 30.6 / 68.4 vol. % (Table).

Table. The dependence of the deformation of the dispersed phase drops on the

value of interphase tension

Mixture γαβ, мН/м
-1

 d мкм q

PP / SPA 2,60 4,0 125

PP / SPA / МS 0,75 2,6 620

PP / PVA 0,73 3,5 273

PP / PVA / МS 0,47 1,7 531

 The table shows that the values of interfacial tension obtained by using

the theory of fracture liquid cylinder for nano-filled compositions are much

lower compared to the initial mixture. This results in reduction of energy

consumption in the formation of new surfaces dispersed phase, that promotes the

dispersion and deformation of the droplets in the matrix polymer PP, PP

microfiber average diameter lower than in the initial mixture of (1,5 ‚ 2,1)

 98

times. Improved model actually describes the process of deformation of a PP

drop in matrix: γαβ reduction in nano-filled mixtures is accompanied by

increasing values of deformation. The results produced by the model are in good

agreement with the experimental data on the influence of nano-filler on

processes of structure -formation. Introduction filler reduces the average

diameter polypropylene microfibers by reducing the surface tension at the

interface.

 Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 14.

 Conclusion

 It is shown that the improvement of previously established mathematical

model of deformation of drop dispersed phase polymer in a of polymer

mixture melt flow in the entry area forming hole can expand its capabilities and

to use it to predict droplets deformation of component dispersed phase in nano-

filled mixtures. Found that the modified model includes the effect of Nano-

additive on droplet deformation in the terms of interphase tension at the

interphase of the components.

2.Planning the experiment and optimization of the content of

nanoadition in polypropylene monothreads

Key provisions

 The purpose was planning the experiment and optimization of the

content of the composition Polypropylene\ binary nanoaddition in order to

obtain Polypropylene monothreads with high mechanical and antibacterial

properties.

 For planning the experiment the simplex-grid method has been used in

pseudo coordinates . The optimization of the content of the nanoaddition has

been carried out using the Harrington criterion.

 99

 The influence of the nanoaddition silver\silica (Ag/SiO2) on the

properties of the Polypropylene (PP) monothreads has been explored using the

method of mathematical modeling and the content of composition for their

forming has been optimized.

 The mathematical model, that defines the interconnection between the

content of the mixture components and the properties of the nanofilled PP

threads, has been created.

 Modified monothreads formed of the optimal content of the

PP\nanoaddition composition combine high level of strength and elasticity and

develop antibacterial effect.

Introduction

Topicality of working out methods of obtaining fibers and threads with

antibacterial effect is caused by necessity in creating some medical products to

cure and protect medical workers and biologists. Attaching bactericidal

properties to threads by inserting metal nanoparticles is one of the most

perspective. Using binary nanocompos, where nanoparticles of biometals are

brought in the surface of inert sorbents, enables creating fundamentally new

materials, that combine antibacterial and sorption effect. Thus, nanocompo

Ag/SiO2 is almost ten times more effective compared to original components,

shows high prolonged antibacterial effect and is safer for peoples’ health and the

environment [1].

Problem

In modern medicine biologically active materials made from

Polypropylene (PP) have become really meaningful, because they are

chemically inert, resistant to microorganisms and have high level of strength

and elasticity. It is known that metallic ions are of high antibacterial properties

and at the same time they have a toxic effect on living beings. Within the

transition to the nanostate, toxicity of metals decreases [2]. Nanoadditions also

have a great influence on mechanical indicators of threads. To define the

 100

interconnection between the composition content and the characteristics of

threads it is necessary to carry out a great number of multivariate experiments.

They are connected with time and materials’ expenditure, because the impact of

each factor is explored apart from others, with fixed meanings of other

parameters. One of the ways, which allows to carry out scientific researches fast

enough and find the decisions most approximate to optimal ones with minimal

expenditures, is the usage of mathematical methods of planning the experiment.

Purpose of this work – planning the experiment and optimization of

composition content Polypropylene/ binary nanoaddition in order to obtain

Polypropylene monothreads with high mechanical and antibacterial properties.

Main material

Strength and elasticity are the main parameters that define the safety of

the surgical stitch. When planning the experiment such parameters were chosen

as original ones:

y1 - strength of monothreads when ruining, y2 - the original module of threads,

y3 - diameter of the retardment of the microorganisms’ growth, y3 - diameter of

the retardment of the St. aureus microorganisms’ growth, and original ones

were: x1, x2, x3 – approximate concentrations of PP, Ag and SiO2 respectively.

The simplex-grid method in pseudo coordinates is the most appropriate

method for mixture systems optimization [3]. Simplex is the simplest

geometrical figure, formed by the set k+1 independent points in k-dimensional

space. Independent variables are called ‘factors’, space with coordinates x1, x2,

x3 is called «factorial space», and the geometrical delineation of the function of

response in factorial space is called «response surface». Correlation of the

ingredients in systems being explored must satisfy the following condition:

,1
1




q

i

ix where xi is

 approximate concentration of ingredients (ix  0); q 

quantity of the ingredients (q  2).

 101

As certain limits are put on the concentration of some ingredients of

three-component mixture, the researches were carried out in the limited part of

the factorial space. As the result the ‘cut-out ’ part was received , which was

unsimilar to simplex, and experimental points were located in it. Having written

the coordinates of experimental points of the simplex grid, we received matrix

of planning. In order to use the standard plan the part being explored was

transformed into the new coordinate system

(z1, z2 z3… zq) [3]. Simplex vertices were being accepted as independent

ingredients of the mixture, so called pseudocomponents. To transit from the

previous coordinate system (x1, x2,...хq) to the new one (z1, z2 … zq) the

following matrix equation was used: X = AZ.

It can be written in the detailed way:

)(

)(

2

)(

1

)()2()1(

)(

2

)2(

2

)1(

2

)(

1

)2(

1

)1(

1

)(

)(

2

)(

1

u

q

u

u

q

qqq

q

q

u

q

u

u

z

z

z

xxx

xxx

xxx

x

x

x














 (2.1)

In equation (1) elements of matrix A are the coordinates of vertices of

transformed simplex, and
)(u

ix та
)(u

iz (i = 1, 2,…, q) – original and new

coordinates of u- transformed point. Herewith such conditions are being done in

z-coordinates:
,1),,,2,1(,10)()(

2
)(

1  u
q

uu
i zzzqiz 

where u is any point of the factorial space.

To work out a model, which defines the interconnection between the

content of the components and the properties of the modified monothreads, the

incomplete cubical polynoma was used:

 321123322331132112332211
ˆ xxxxxxxxxxxxy  

 (2.2)

wherе ijkiji  ,, - are polynomial coefficients, moreover i  j  k = 1, 2, 3.

To estimate numeric values of the coefficients of the equation, the plan of

carrying out the experiments in the area of the factorial space being explored

 102

was prepared (table 1), herewith z-coordinates were chosen from the standard

plan for the model given [3], x-coordinates were counted according to the

formula (1).

Table 1. Simplex-grid plan

№ of

the

experime

nt

 Plan of experiment

obtaine

d

variable

Plan in

pseudocoordinates

 Working plan

z1 z2 z3 x1 x2 x3

1 1 0 0 0.9851 0.0050 0.00

99

1y

2 0 1 0 0.9880 0.0021 0.00

99

2y

3 0 0 1 0.9920 0.0040 0.00

40

3y

4 0,5 0,5 0 0.9866 0.0036 0.00

99

12y

5 0,5 0 0,5 0.9900 0.0030 0.00

70

13y

6 0 0,5 0,5 0.9886 0.0045 0.00

70

23y

7 0,33

3

0,33

3

0,33

3

0.9785 0.0037 0.00

79

123y

To define the influence of correlation PP/ Ag/SiO2 the mixture on the

mechanical and antibacterial properties of monothreads according to the plan a

series of experiments was carried out and original and obtained parameters were

defined (table 2).

Table 2. Influence of the concentration Ag/SiO2 on the properties of PP

monothreads

Original

variable

Number of the experiment

1 2 3 4 5 6 7

y1

480 540 590 510 530 570 540

y2 6200 780

0

7900 6500 6900 8000 7700

y3 14.1 8,5 13.8 13.5 9,5 13.3 11.4

 103

On the basis of the data mentioned in table 2 polynomial coefficients (2)

have been counted using the method of the least squares in the matrix form. The

countings have been done using the specially created programme in the Delphi

programming environment on the Object Pascal language. As the result, the

system of the equations has been received (3). It is a mathematical model, that

describes the process being explored in z-coordinates.















3213231213213

3213231213212

3213231213211

zzz 18,33 -z8,6z zz 17,8 zz 8,8 z 13,88,5z14,1zy

 zz17036,16z z600zzz 599,99 - zz 2000 -z 7899,99z 7800z 6200y

zzz 104,80 zz 20,00 zz 19,99 zz 0z 590z 539,99z 479,99y

 (2.3)

Having defined the coefficients, the mathematical model was being

checked in adequacy, which means ability to predict the results of the research

in some area with necessary exactness. For this, additional experiments were

being put in so called control points, the value of the Student criterion was being

counted and compared with the table data. Received values of the criterion

mentioned are the evidence of the adequacy of this model.

To solve the problem of optimization the so called generalized function

of advisability (D) was used. Harrington offered to use it as the generalized

criterion of optimization [4]. To count value D state values of responses were

transformed into the non-dimensional scale of advisability for each original

parameter using exponential dependency. The generalized criterion of D

optimization was being counted as the geometric mean of partial functions of

advisability. The value of the Harrington criterion is limited within the interval

[0...1] (0 stands for absolutely unacceptable value of the response given, 1

stands for the most optimal value of the response).

Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix

13.

 Optimal content of the mixture being explored was being defined using

the method of scanning by step 0,01 in z-coordinates. According to the matrix

 104

equation (1) the content of original components was transformed into the x-

system. While the criterion of advisability D=0.8256 the determined optimal

correlation of mixture components for monothreads formation is mas%: PP –

99,16; Ag – 0,38; SiO2 – 0,46, and indicators that characterize the quality of

modified threads, are as following: comparative strength of monothreads when

ruining – 587 MPa, original module – 7944 MPa, diameter of area of St.aureus

bacteria growth retardment – 14,0 mm.

Laboratorial patterns of monothreads have been worked out from the

composition of optimal content and their properties have been explored. It has

been found out, that stitch threads have an antibacterial effect; they also have

good operating characteristics and fix the surgical knot in a proper way due to

high strength and elasticity.

 Conclusions

Planning the experiment concerning the influence of the binary

nanoaddition silver\silica on the properties of the Polypropylene monothreads

has been carried out using the method of mathematical modeling. The content of

Ag/SiO2 in the PP fusion has been optimized and biologically active

monothreads with maximal mechanical characteristics have been formed.

 105

LITERATURE

 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.

8-е изд., М.: БИНОМ. Лаборатория знаний, 2015. - 636 с.

 2. Baklavaridis A., Zuburtikudis I., Panayiotou C. Porous Composite

Structures Derived from Multiphase Polymer Blends // Polym. Eng. Sci. – 2015.

– V.55, №8. – Р. 1856-1863.

 3. Beloshenko V.A., Plavan V.P., Rezanova N.M., Savchenko B.M.,

Vozniak I. Production of high-performance multi-layer fine-fibrous filter

materials by application of material extrusion-based additive manufacturing //

The Int. J. of Adv. Manufac. Techn. – 2019. – №.101. – P. 2681-2688.

 4. Васильев А. Программирование на C++ в примерах и задачах. М.:

Эксмо, 2021. – 368 с.

 5. Guo J., Briggs N., Crossley S., Grady B.P. Morphology of

Polystyrene/poly(methyl Methacrylate) Blends: Effects of Carbon Nanotubes

Aspect Ratio and Surface Modification // AIChE J. – 2015. – V. 61, № 10. – Р.

3500–3510.

 6. Демидович Б. П., Марон И. А. Основы вычислительной

математики: учебное пособие для студентов втузов - 4-е изд., испр. - М. :

Наука, 1970. - 664 с.

 7. Зедгинидзе И.Г. Планирование эксперимента для исследования

многокомпонентных систем. – М.: Наука, 1976. – 392 с.

 8. Исаков В.Н. Элементы численных методов: учеб. пособ. – М.:

Академия, 2008. – 192с.

 9. Колдаев В. Д. Численные методы и программирование. М.: ИД

«ФОРУМ». - 2021. - 336с.

 10. Культин Н. Основы программирования в Delphi 7. С-Пб.: БХВ-

Петербург, 2012. – 608с.

 106

 11. Липпман С., Лажойе Ж., Му Б. Язык программирования C++.

Базовый курс. - М.: Вильямс, 2016. - 1120 c.

 12. Мейерс C. Эффективный и современный С++. М.: Вильямс,

2016. - 304 c.

 13. Прата С. Язык программирования C++ (C++11). Лекции и

упражнения, 6-е издание — М.: Вильямс, 2012. — 1248 с.

 14. Резанова В.Г. Математичне моделювання та компютерна

візуалізація процесу специфічного волокно утворення // К.: Вісник

КНУТД. - № 4, 2017. - с. 19-26

 15. Резанова В.Г., Резанова Н.М. Програмне забезпечення для

дослідження полімерних систем // К.:АртЕк. - 2020. 358 с.

 16. Резанова В.Г., Резанова Н.М. Розробка програмного забезпечення

для визначення реологічних характеристик розплавів полімерів // Вісник

Хмельницького національного університету. - № 5, 2018. - с. 21-25

 17. Rezanova V.G., Shchotkina V.I., Tsebrenko M.V. Planning the

experiment and optimization of the content of nanoaddition in polypropylene

monothreads // Вісник КНУТД. – 2014. – № 2. – С. 42-47.

 18. Резанова В.Г. Дослідження властивостей чотирикомпонентних

систем мeтодом математичного моделювання // Вісник КНУТД. – 2014. –

№ 3. – С. 113-120.

 19. Резанова В.Г. Перетворення задачі оптимізації при дослідженні

чотирикомпонентних сумішей полімерів / К.: Вісник КНУТД. – 2016. –

№2 . – С. 40-47.

 120. Резанова В.Г. Оптимізація складу чотирикомпонентних сумішей

полімерів із застосуванням методу штрафних функцій Оптимізація

методом штрафних функцій // К.: Вісник КНУТД. – 2016. – №3 . – С. 59-

67.

https://www.ozon.ru/person/344228/
https://www.ozon.ru/person/344229/
https://www.ozon.ru/person/1273570/

 107

 21. Резанова В.Г., Резанова Н.М., Коршун А.В. Дослідження

морфології сумішей полімерів з використанням розробленого програмного

забезпечення // Вісник КНУТД. – 2017. – №2. – С.120–127.

 22. V. G. Rezanova, N. M. Rezanova Mathematical Modelling and

Software Development to Optimize the Composition of Four-Component

Nanofilled Systems // Наносистеми, наноматеріали, нанотехнології.

("Nanosistemi, Nanomateriali, Nanotehnologii") - 2020, т. 18, № 4, с. 863–874

 23. Rezanova V.G., Shchotkina V.I., Tsebrenko M.V. Planning the

experiment and optimization of the content of nanoaddition in polypropylene

monothreads // Вісник КНУТД. – 2014. – № 2. – С. 42-47

 24. Роджерс Д., Адамс Дж. Математические основы машинной

графики. – М.: Мир, 2008. – 239с.

 25. Tran N. H. A, Brünig, H., Landwehr M.A., Vogel R., Heinrich G.

Controlling micro- and nanofibrillar morphology of polymer blends in low-

speed melt spinning process. Part II: Influences of extrusion rate on

morphological changes of PLA/PVA through a capillary die // J. Appl. Polym.

Sci. – 2016. – № 133. – Р.442-573.

 26. Фленов М. Библия программиста (Delphi), 3-е издание С-Пб.: БХВ-

Петербург, 2011. – 688с

 27. Цебренко М.В., Резанова Н.М., Мельник І.А., Резанова В.Г.,

Вільцанюк О.А., Хуторянський М.О. Нанонаповнені поліпропіленові

мононитки // Вісник КНУТД. – 2012. – №4. – С 93-97.

 28. Шахов Ю.Н., Деза Е.И., Численные методы. – М.: Либроком,

2017. – 248 с.

29 Шилдт Г. С++. Базовый курс. – М.: Диалектика-Вильямс, 2018. –

624 с.

 30. Шлее М. Qt 5.10. Профессиональное программирование на C++.

С.-Пб.: БХВ-Петербург, 2018. – 1074 с.

 108

 31. Щербань В.Ю., Краснитський С.М., Резанова В.Г..

Математические моделі в САПР. Обрані розділи та приклади застосування:

– К.:КНУТД, 2011. – 219с.

 32. Stroustrup B. Programming: Principles and Practice Using C++ (2nd

Edition). Addison-Wesley Professional, 2014. – 1312 p.

 33. Vrsaljko D., Macut D., Kovačević V. Potential Role of Nanofillers as

Compatibilizers in Immiscible PLA/LDPE Blends // J. Appl. Polym. Sci. –

2015. – V. 132, № 6. – P. 119-127.

 109

Annex 1

The procedure for calculating the determinant of a matrix of arbitrary order

procedure PrDetN(KoefN:Matr;n:integer; var DetN:Real);

var Koef:Matr;

 i,j:integer;

 Det,Det3:real;

begin

if n=3 then begin

 Det3:=KoefN[1,1]*KoefN[2,2]*KoefN[3,3]+

 KoefN[2,1]*KoefN[3,2]*KoefN[1,3]+

 KoefN[1,2]*KoefN[2,3]*KoefN[3,1]-

 KoefN[1,3]*KoefN[2,2]*KoefN[3,1]-

 KoefN[2,1]*KoefN[1,2]*KoefN[3,3]-

 KoefN[1,1]*KoefN[2,3]*KoefN[3,2];

 DetN:=Det3;

 end

 else

begin

Det:=KoefN[1,1];

 for i:=2 to n do

 begin

 for j:=2 to n do

 begin

 Koef[i-1,j-1]:=

 (KoefN[1,1]*KoefN[i,j]-KoefN[i,1]*KoefN[1,j])/KoefN[1,1];

 end;

 end;

 for i:=1 to n-1 do

 begin

 for j:=1 to n-1 do

 begin

 KoefN[i,j]:=Koef[i,j];

 end;

 end;

PrDetN(KoefN,n-1,DetN);

DetN:=DetN*Det;

end;

end;

 110

Annex 2

The procedure for solving the system of linear equations by the Cramer method

procedure Kramer(A:matr;b:vector;n:integer;var x:vector);

var i,j:integer;

 DetAo,DetAd:real;

 temp:vector;

begin

PrDetN(A,n,DetAo); // annex 1

if DetAo=0 then ShowMessage('Kramer metod can not be used')

 else

 begin

 for j:=1 to n do

 begin

 for i:=1 to n do

 begin

 temp[i]:=A[i,j];

 A[i,j]:=b[i];

 end;

 PrDetN(A,n,DetAd); // annex 1

 x[j]:=DetAd/DetAo;

 for i:=1 to n do

 begin

 A[i,j]:=temp[i];

 end;

 end;

 end;

end;

 111

Annex 3

Procedure that implements the Gaussian method

procedure pram_hid(var A:mas);

var

i,j,z,rad,c:integer;

max,temp:real;

x:odnomir;

begin

for i:=1 to n do begin //schotchik stovbchikiv

//perestavlayem yakscho diagonalniy element =0

if A[i,i]=0 then begin

 for j:=i to n do

 if (A[j,i]<>0) then begin

 rad:=j; break; end;

 //perestavlayem radki

 for z:=i to n+1 do begin

 temp:=A[i,z]; A[i,z]:=A[rad,z];

 a[rad,z]:=temp;

 end;

//delim radok z diagonalnim elementom

temp:=A[i,i];

for j:=i to n+1 do begin

 A[i,j]:=A[i,j]/temp;

 end;

 if i<=n then

 for j:=i+1 to n do BEGIN TEMP:=-a[J,I];

 for z:=i to n+1 do

 A[j,z]:=(TEMP*A[I,Z])+A[J,z];

 end;

 end;

end;

procedure zvor_hid(var A:mas);

var

i,j,z,rad,c:integer;

max,temp:real;

x:odnomir;

begin

for i:=n downto 1 do begin

 if i>=1 then

 for j:=i-1 downto 1 do BEGIN TEMP:=-a[J,I];

 for z:=n+1 downto i do

 A[j,z]:=(TEMP*A[I,Z])+A[J,z];

 end;

end;

end;

 112

 Annex 4

The procedure for solving a system of linear equations (in normal form) by

simple iterations

procedure Iter(A:matr;S1:vector;X0:vector;n:integer;eps:real;var X1:vector);

var Xk,Xk_p1:vector;

 t,t0:real;

 i,j,k,k_iter:integer;

begin

t0:=0;

k_iter:=round(ln(eps*(1-norma)/norma_v)/ln(norma))+1;

 for i:=1 to n do

 begin

 Xk[i]:=X0[i];

 end;

 for k:=1 to k_iter do

 begin

 for i:=1 to n do

 begin

 Xk_p1[i]:=S1[i];

 for j:=1 to n do

 begin

 Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk[j];

 end;

 t:=abs(Xk_p1[i]-Xk[i]);

 if t>t0 then t0:=t;

 Xk[i]:=Xk_p1[i];

 end;

 for i:=1 to n do

 begin

 X1[i]:=Xk_p1[i];

 end;

 end;

end;

 113

Annex 5

The procedure for solving a system of linear equations (in normal form) by the

Seidel method

procedure Zeidel(A:matr;S1:vector;X0:vector;n:integer;eps:real;var X1:vector);

var Xk,Xk_p1:vector;

 t,t0,delta:real;

 i,j,k,k_iter:integer;

begin {proc}

 for i:=1 to n do

 begin

 Xk[i]:=X0[i];

 end;

 delta:=eps*(1-1/norma);

repeat

 for i:=1 to n do

 begin

 Xk_p1[i]:=S1[i];

 for j:=1 to n do

 begin

 if i>j then Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk_p1[j]

 else Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk[j];

 end;

 t:=abs(Xk_p1[i]-Xk[i]);

 Xk[i]:=Xk_p1[i];

 end;

until t>delta;

 for i:=1 to n do

 begin

 X1[i]:=Xk_p1[i];

 end;

end;

 114

Annex 6

Auxiliary procedures for the implementation of methods for refining the roots of

transcendental equations

procedure znaki_f(a,b:real; var flag:boolean);

var x1:real;

begin

 flag:=true;

 x1:=f(a)*f(b);

 if x1>0 then begin

 showMessage('Function doesnt change signum. Choose other interval!');

 flag:=false;

 end;

end;

procedure znak_f_(a,b:real; var flag1:boolean);

var x1,x2,f_x1,f_x2,h,pr:real;

begin

 flag1:=true;

 h:=0.00001;

 x1:=a;

 f_x1:=f_(x1);

 while x1<=b do

 begin

 x2:=x1+h;

 f_x2:=f_(x2);

 pr:=f_x1*f_x2;

 if pr<0 then begin

 showMessage('First proizv. changes signum. Choose other interval!');

 flag:=false;

 end;

 x1:=x2;

 end;

end;

procedure min_f_(a,b,h:real; var m1:real); var x1,x2,f_x1,f_x2:real;

begin

 x1:=a;

 f_x1:=abs(f_(x1));

 m1:=f_x1;

 while x1<=b do

 begin

 x2:=x1+h;

 f_x2:=abs(f_(x2));

 if f_x2<m1 then m1:=f_x2;

 x1:=x2;

 end;

end;

 115

procedure max_f__(a,b:real; var M2:real);

var x1,x2,f__x1,f__x2,h:real;

begin

 h:=0.00001;

 x1:=a;

 f__x1:=abs(f__(x1));

 M2:=f__x1;

 while x1<=b do

 begin

 x2:=x1+h;

 f__x2:=abs(f__(x2));

 if f__x2>M2 then M2:=f__x2;

 x1:=x2;

 end;

end;

 116

Annex 7

The procedure that implements the clarification of the root of the transcendental

equation by the method of half division

procedure M_Dihot(a,b:real; var koren:real);

var c, fa, fb, fc: real;

 i:integer;

begin

if abs(b-a)<eps then begin c:=(a+b)/2;

 koren:=c;end

 else

 begin

 c:=(a+b)/2;

 fc:=f(c);

 fa:=f(a);

 fb:=f(b);

 if fc=0 then koren:=c

 else

 begin

 if fa*fc<0 then begin a:=a; b:=c; end else begin a:=c; b:=b; end;

 M_Dihot(a,b,c);

 end;

end;

end;

 117

Annex 8

The procedure that implements the refinement of the root of the transcendental

equation by the method of tangents

procedure M_Dot(a,b,eps:real;var x:real);

var xk,xk1,razn,delta:real;

 i:integer;

begin

 i:=1;

 min_f_(a,b,0.0001,m1); // Виклик процедури, описаної в додатку 6

 max_f__(a,b,M2); // Виклик процедури, описаної в додатку 6

 if f(a)*f__(a)>0 then xk:=a else xk:=b;

 delta:=power((eps*m1/M2),(1/2));

 repeat

 xk1:=xk-f(xk)/f_(xk);

 razn:=abs(xk1-xk);

 xk:=xk1;

 i:=i+1;

 until(razn<delta);

 x:=xk;

end;

 118

The procedure for finding the compression ratio

procedure k_szhatia(a,b:real;var q:real; var flag:boolean);

var x1,x2,

 f_1,f_2:real;

begin

 flag:=true;

 f_1:=abs(fi_(x1));

 q:=abs(fi_(x1));

 if f_1>1 then flag:=false;

 while x1<=b do

 begin

 x2:=x1+0.00001;

 f_2:=abs(fi_(x2));

 if f_2>1 then flag:=false

 else if f_2>q then q:=f_2;

 x1:=x2;

 end;

end;

 119

Annex 9

The procedure that implements the refinement of the root of the transcendental

equation by the method of iterations

procedure ur_iter(x0,eps:real;var x:real);

var xn,xn1,razn:real;

begin

 k_szhatia(a,b,q,flag);

 if flag=false then showMessage('Method can not be used!')

 else

 begin

 xn:=x0;

 delta:=eps*(1/q-1);

 repeat

 xn1:=fi(xn);

 razn:=abs(xn1-xn);

 vivid_iter(xn,xn1,razn);

 xn:=xn1;

 until razn<delta;

 x:=xn1;

 end;

end;

 120

Annex 10

A procedure that clarifies the roots of a system of two nonlinear equations by

Newton's method

procedure Sys2_Newton(x0,y0,eps:real;var x,y:real);

var deltax, deltay, delta:real;

begin

 repeat

 A[1,1]:=f1_x(x0,y0);

 A[1,2]:=f1_y(x0,y0);

 A[2,1]:=f2_x(x0,y0);

 A[2,2]:=f2_y(x0,y0);

 b[1]:=-f1(x0,y0);

 b[2]:=-f2(x0,y0);

Kramer(A,b,2,x1);// annex 2

 deltax:=x1[1];

 deltay:=x1[2];

 x:=x0+deltax;

 y:=y0+deltay;

 x0:=x;

 y0:=y;

 if abs(deltax)>abs(deltay) then delta:=abs(deltax) else delta:=abs(deltay);

 until (delta<eps);

 end;

 121

Annex 11

A procedure that implements the solution of a system of two differential

equations by the Runge-Kutta method

procedure M_Runge_Kutta(CurrT,CurrTeta,CurrQ,h:real;Var Yk1,Zk1:real);

var k1,k2,k3,k4,

 m1,m2,m3,m4,

 FQ,FTeta:real;

begin

if CurrQ>0 then begin

 FuncQ(CurrT,CurrTeta,CurrQ,FQ);

 FuncTeta(CurrT,CurrTeta,CurrQ,FTeta);

 k1:=FTeta*h;

 m1:=FQ*h;

 FuncQ(CurrT+h/2,CurrTeta+k1/2,CurrQ+m1/2,FQ);

 FuncTeta(CurrT+h/2,CurrTeta+k1/2,CurrQ+m1/2,FTeta);

 k2:=FTeta*h;

 m2:=FQ*h;

 FuncQ(CurrT+h/2,CurrTeta+k2/2,CurrQ+m2/2,FQ);

 FuncTeta(CurrT+h/2,CurrTeta+k2/2,CurrQ+m2/2,FTeta);

 k3:=FTeta*h;

 m3:=FQ*h;

 FuncQ(CurrT+h,CurrTeta+k3,CurrQ+m3,FQ);

 FuncTeta(CurrT+h,CurrTeta+k3,CurrQ+m3,FTeta);

 k4:=FTeta*h;

 m4:=FQ*h;

 Yk1:=CurrTeta+(1/6)*(k1+2*k2+2*k3+k4);

 Zk1:=CurrQ+(1/6)*(m1+2*m2+2*m3+m4);

 end

end;

 122

Annex 12

Procedures for calculating the Lagrange polynomial

procedure znamen;

var k,i:integer;

begin

for k:=0 to z-1 do begin

 znam[k]:=1;

 for i:=0 to z-1 do begin

 if k<>i then begin znam[k]:=znam[k]*(t[k]-t[i]); end;

end;

 end;end;

Procedure l(dx:real; var xc,yc:real);

var k,i:integer;

begin

xc:=0; yc:=0;

for k:=0 to z-1 do begin

for i:=0 to z-1 do

if i<>k then begin

 c[k]:=c[k]*(dx-t[i]);

 end;

 xc:=xc+(x[k]*(c[k]/znam[k]));

 yc:=yc+(y[k]*(c[k]/znam[k]));

 end;

end;

procedure paint1(mas:real);

var g:real;

begin

znamen;

g:=-10;

repeat

 l(g,хс,ус);

 form1.image1.Canvas.Pixels[round((mas*xc)+(w/2)),round((mas*-yc)+(h/2))]:=clred;

 g:=g+0.001;

until g>10;

end;

 123

Annex 13

Basic procedures and functions for calculation and graphical display of

rheological characteristics of polymer blends

procedure TForm1.Button2Click(Sender: TObject);

var i:integer;

 q:string;

begin

for i:=0 to 10 do

 begin

 SdTcp[i]:=S[i]/Tcp[i]/1000;

 LgSdTcp[i]:=ln(SdTcp[i])/ln(10);

 Lg_D[i]:=LgK2+LgSdTcp[i];

 end;

 for i:=0 to 9 do

 begin

 dLg_D[i]:=Lg_D[i]-Lg_D[i+1];

 dLgT[i]:=LgT[i]-LgT[i+1];

 N[i]:=dLg_D[i]/dLgT[i];

 end;

 for i:=0 to 9 do

 begin

 LgD[i]:=ln(N[i]+3)/ln(10)+Lg_D[i];

 LgEta[i]:=LgT[i]-LgD[i];

 Eta[i]:=Power(10,LgEta[i]);

 end;

 Form2.Show;

 Form5.Hide;

 for i:=0 to 9 do

 begin

 Form2.Memo1.Lines.add(IntToStr(i+1));

 q:=format('%*.*f',[8,7,SdTcp[i]]);

 Form2.Memo5.Lines.add(q);

 q:=format('%*.*f',[5,4,Lg_D[i]]);

 Form2.Memo6.Lines.add(q);

 q:=format('%*.*f',[5,4,N[i]]);

 Form2.Memo7.Lines.add(q);

 q:=format('%*.*f',[2,1,Tcp[i]]);

 Form2.Memo2.Lines.add(q);

 q:=format('%*.*f',[2,0,S[i]]);

 Form2.Memo3.Lines.add(q);

 q:=format('%*.*f',[5,4,LgT[i]]);

 Form2.Memo4.Lines.add(q);

 q:=format('%*.*f',[5,4,LgD[i]]);

 Form2.Memo8.Lines.add(q);

 q:=format('%*.*f',[5,4,LgEta[i]]);

 Form2.Memo9.Lines.add(q);

 q:=format('%*.*f',[5,1,Eta[i]]);

 Form2.Memo10.Lines.add(q);

 end;

 124

end;

procedure TForm1.Button3Click(Sender: TObject);

var i:integer;

 q:string;

begin

 for i:=0 to kd-1 do

 begin

 SdTcp[i]:=S[i]/Tcp[i]/1000;

 LgSdTcp[i]:=ln(SdTcp[i])/ln(10);

 Lg_D[i]:=LgK2+LgSdTcp[i];

 end;

 for i:=0 to kd-2 do

 begin

 dLg_D[i]:=Lg_D[i]-Lg_D[i+1];

 dLgT[i]:=LgT[i]-LgT[i+1];

 N[i]:=dLg_D[i]/dLgT[i];

 end;

 for i:=0 to kd-2 do

 begin

 LgD[i]:=ln(N[i]+3)/ln(10)+Lg_D[i];

 LgEta[i]:=LgT[i]-LgD[i];

 Eta[i]:=Power(10,LgEta[i]);

 end;

 Form2.Show;

 Form5.Hide;

 for i:=0 to kd-2 do

 begin

 Form2.Memo1.Lines.add(IntToStr(i+1));

 q:=format('%*.*f',[8,7,SdTcp[i]]);

 Form2.Memo5.Lines.add(q);

 q:=format('%*.*f',[5,4,Lg_D[i]]);

 Form2.Memo6.Lines.add(q);

 q:=format('%*.*f',[5,4,N[i]]);

 Form2.Memo7.Lines.add(q);

 q:=format('%*.*f',[2,1,Tcp[i]]);

 Form2.Memo2.Lines.add(q);

 q:=format('%*.*f',[2,0,S[i]]);

 Form2.Memo3.Lines.add(q);

 q:=format('%*.*f',[5,4,LgT[i]]);

 Form2.Memo4.Lines.add(q);

 q:=format('%*.*f',[5,4,LgD[i]]);

 Form2.Memo8.Lines.add(q);

 q:=format('%*.*f',[5,4,LgEta[i]]);

 Form2.Memo9.Lines.add(q);

 q:=format('%*.*f',[5,1,Eta[i]]);

 Form2.Memo10.Lines.add(q);

 end;

 for i:=0 to kd-2 do

 125

 begin

 LgD2[i]:=ln(N2[i]+3)/ln(10)+Lg_D2[i];

 dLgD[i]:=LgD[i]-LgD[i+1];

 LgEta2[i]:=LgT2[i]-LgD2[i];

 Eta2[i]:=Power(10,LgEta2[i]);

 end;

 end;

procedure TForm1.Button5Click(Sender: TObject);

begin

 kd:=StrToInt(Edit34.Text);

end;

procedure vvod(c:STRING; var F_Tcp,F_S,F_LgT:TS);

var f:textfile;

i,j:integer;

begin

 assignfile(f,c);

 reset(f);

 readln(f,kd);

 for i:=0 to kd-1 do

 begin

 read(f,F_Tcp[i]);

 read(f,F_S[i]);

 read(f,F_LgT[i]);

 readln(f);

 end;

end;

procedure TForm1.Button7Click(Sender: TObject);

var f:textfile;

i,j:integer;

begin

 assignfile(f,'inp.txt');

 reset(f);

 readln(f,kd);

 for i:=0 to kd-1 do

 begin

 read(f,Tcp[i]);

 read(f,S[i]);

 read(f,LgT[i]);

 readln(f);

 end;

closefile(f);}

Form6.Show;

end;

end.

 126

Unit2

Procedure vivid(C:STRING;D:TS);

var f1:textfile;

i,j:integer;

begin

 assignfile(f1,C);

 append(f1);

 for i:=1 to kd-1 do

 begin

 write(f1,D[i]:0:4); //write(f1,' ');

 writeln(f1);

 end;

close(f1);

end;

procedure TForm2.Button1Click(Sender: TObject);

var i:integer;

 f2, f3,f4:textfile;

 q:string;

begin

 kNazhatiy:=kNazhatiy+1;

 Nr:=StrToInt(Edit21.Text);

 Form3.Show;

 Ncp1:=0;

 Ncp2:=0;

for i:=0 to Nr-1 do

 begin

 Ncp1:=Ncp1+N[i];

 end;

 Ncp1:=Ncp1/Nr;

 for i:=0 to Nr-1 do

 begin

 LgD[i]:=ln(Ncp1+3)/ln(10)+Lg_D[i];

 LgEta[i]:=LgT[i]-LgD[i];

 Eta[i]:=Power(10,LgEta[i]);

 end;

 for i:=0 to Nr-1 do

 begin

 if kNazhatiy=1 then LgEta1[i]:=LgEta[i];

 if kNazhatiy=2 then LgEta2[i]:=LgEta[i];

 if kNazhatiy=3 then LgEta3[i]:=LgEta[i];

 end;

 for i:=0 to Nr-1 do

 begin

 LgEta123[i]:=LgEta1[i];

 end;

 for i:=Nr to (Nr-1)*2 do

 begin

 LgEta123[i]:=LgEta2[i];

 127

 end;

 for i:=(Nr-1)*2+1 to (Nr-1)*3 do

 begin

 LgEta123[i]:=LgEta3[i];

 end;

 for i:=Nr to kd-1 do

 begin

 Ncp2:=Ncp2+N[i];

 end;

 Ncp2:=Ncp2/(kd-1-Nr);

Form3.Edit1.Text:=FloatToStr(Ncp1);

Form3.Edit2.Text:=FloatToStr(Ncp2);

 for i:=Nr to kd-2 do

 begin

 LgD[i]:=ln(Ncp2+3)/ln(10)+Lg_D[i];

 LgEta[i]:=LgT[i]-LgD[i];

 Eta[i]:=Power(10,LgEta[i]);

 Memo1.Lines.add(FloatToStr(LgEta[i]));

 Memo2.Lines.add(FloatToStr(Eta[i]));

 end;

 for i:=0 to kd-2 do

 begin

 Form3.Memo4.Lines.add(IntToStr(i+1));

 q:=format('%*.*f',[8,7,SdTcp[i]]);

 Form3.Memo1.Lines.add(q);

 q:=format('%*.*f',[5,4,Lg_D[i]]);

 Form3.Memo2.Lines.add(q);

 q:=format('%*.*f',[5,4,N[i]]);

 Form3.Memo3.Lines.add(q);

 q:=format('%*.*f',[2,1,Tcp[i]]);

 Form3.Memo5.Lines.add(q);

 q:=format('%*.*f',[2,0,S[i]]);

 Form3.Memo6.Lines.add(q);

 q:=format('%*.*f',[5,4,LgT[i]]);

 Form3.Memo7.Lines.add(q);

 q:=format('%*.*f',[5,4,LgD[i]]);

 Form3.Memo8.Lines.add(q);

 q:=format('%*.*f',[5,4,LgEta[i]]);

 Form3.Memo9.Lines.add(q);

 q:=format('%*.*f',[5,1,Eta[i]]);

 Form3.Memo10.Lines.add(q);

 end;

 vivid ('out.txt',LgT);

 vivid ('out2.txt',LgEta);

 end;

Unit3

procedure Det3x3(Koef:MyArr; var Det:Real);

begin

 Det:=Koef[1,1]*Koef[2,2]*Koef[3,3]+

 128

 Koef[2,1]*Koef[3,2]*Koef[1,3]+

 Koef[1,2]*Koef[2,3]*Koef[3,1]-

 Koef[1,3]*Koef[2,2]*Koef[3,1]-

 Koef[2,1]*Koef[1,2]*Koef[3,3]-

 Koef[1,1]*Koef[2,3]*Koef[3,2];

end;

procedure MinSq(X,Y:TS; Ac,Bc,Cc:real);

var i,j:integer;

 S1,S2,S3,S4,S5,S6,S7:real;

begin

for i:=0 to 9 do

 begin

 S1:=S1+power(X[i],4);

 S2:=S2+power(X[i],3);

 S3:=S3+X[i]*X[i];

 S4:=S4+X[i];

 S5:=S5+X[i]*X[i]*Y[i];

 S6:=S6+X[i]*Y[i];

 S7:=S7+Y[i];

 end;

 Koef[1,1]:=S1;

 Koef[2,1]:=S2;

 Koef[3,1]:=S3;

 Koef[1,2]:=S2;

 Koef[2,2]:=S3;

 Koef[3,2]:=S4;

 Koef[1,3]:=S3;

 Koef[2,3]:=S4;

 Koef[3,3]:=1;

 St[1]:=S5;

 St[2]:=S6;

 St[3]:=S7;

 Kramer3(Koef,St,Ac,Bc,Cc);

end;

Unit4

procedure Scale(A,B:TS;var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real);

var k:integer;

 pr,pr1,Min,Min1,Max,Max1:Real;

begin

 Min:=A[0];

 Max:=A[0];

 Min1:=B[0];

 Max1:=B[0];

 for k:=1 to kd-2 do

 begin

 if A[k]>Max then Max:=A[k];

 if A[k]<Min then Min:=A[k];

 if B[k]>Max1 then Max1:=B[k];

 129

 if B[k]<Min1 then Min1:=B[k];

 end;

MinA:=Min;

MinB:=Min1;

 pr:=Max-Min;

 Mx:=290/pr;

 pr1:=Max1-Min1;

 My:=270/pr1;

 ShA:=pr/10;

 ShB:=pr1/10;

 KA:=0;

 KB:=0;

if Min>pr then KA:=1;

if Min1>pr1 then KB:=1;

end;

procedure OsiCoord;

var i:integer;

begin

 X0:=35;

 Y0:=300;

Form4.Image1.Canvas.MoveTo(X0,Y0+10);

Form4.Image1.Canvas.LineTo(X0,5);

Form4.Image1.Canvas.MoveTo(X0-10,Y0);

Form4.Image1.Canvas.LineTo(370,Y0);

for i:=1 to 11 do

 begin

 Form4.Image1.Canvas.MoveTo(X0+10+29*(i-1),Y0-2);

 Form4.Image1.Canvas.LineTo(X0+10+29*(i-1),Y0+2);

 Form4.Image1.Canvas.MoveTo(X0+2,Y0-10-27*(i-1));

 Form4.Image1.Canvas.LineTo(X0-2,Y0-10-27*(i-1));

 end;

end;

procedure RazmetkaOsey(A,B:TS);

var i:integer;

 q,q1:string;

 Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real;

begin

Scale(A,B,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

 for i:=0 to 5 do

 begin

 q:=format('%*.*f',[4,3,MinA]);

 Form4.Image1.Canvas.TextOut(X0+29*2*i+2,Y0+4,q) ;

 MinA:=MinA+2*ShA;

 end;

 for i:=0 to 11 do

 begin

 q1:=format('%*.*f',[4,3,MinB]);

 Form4.Image1.Canvas.TextOut(X0-30,Y0-14-27*i,q1) ;

 130

 MinB:=MinB+ShB;

 end;

end;

procedure Griphic_Lg_D_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real;

 i:integer;

begin

RazmetkaOsey(LgT,Lg_D);

Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

Form4.Image1.Canvas.MoveTo

 (X0+round(LgT[0]*Mx-KA*MinA{4.9}*Mx+10),

 Y0-(round(Lg_D[0]*My-{KB*}{0.3}MinB*My{177.8}))-10);

for i:=1 to kd-2 do

 begin

 Form4.Image1.Canvas.LineTo

 (X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx+10{4.6*MSx{181.8-4.6*181.8}),

 Y0-(round(Lg_D[i]*My-{KB*}MinB{0.3}*My{177.8}))-10);

 end;

for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10,

 Y0-round(Lg_D[i]*My-{KB*}{0.3}MinB*My)-2-10,

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10,

 Y0-round(Lg_D[i]*My-{KB*}MinB{0.3}*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Griphic_LgEta_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real;

 i:integer;

begin

RazmetkaOsey(LgT,LgEta);

Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

Form4.Image1.Canvas.MoveTo(

 X0+round(LgT[0]*Mx-KA*MinA*Mx)+10,

 Y0-round(LgEta[0]*My-{KB*}MinB*My)-10

);

for i:=1 to kd-2 do

 begin

 Form4.Image1.Canvas.LineTo

 (X0+round(LgT[i]*Mx-KA*MinA*Mx)+10,

 Y0-round(LgEta[i]*My-{KB*}MinB*My)-10);

 end;

 for i:=0 to kd-2 do

 131

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10,

 Y0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-2-10,

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10,

 Y0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Griphic_Eta_T;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real ;

 i:integer;

 T:TS;

begin

for i:=0 to kd-2 do

 begin

 T[i]:=power(10,LgT[i]);

 end;

RazmetkaOsey(T,Eta);

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

Form4.Image1.Canvas.MoveTo

 (X0+round(T[0]*Mx-KA*MinA*Mx)+10,

 Y0-round(Eta[0]*My-{KB*}MinB*My{177.8})-10);

for i:=1 to kd-2 do

 begin

 Form4.Image1.Canvas.LineTo

 (X0+round(T[i]*Mx-KA*MinA*Mx)+10,

 Y0-round(Eta[i]*My-{KB*}MinB*My)-10);

 end;

 for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)-2+10,

 Y0-round(Eta[i]*My-{KB*}{0.3}MinB*My)-2-10,

 X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)+2+10,

 Y0-round(Eta[i]*My-{KB*}MinB{0.3}*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Points_Lg_D_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real;

 i:integer;

 132

begin

RazmetkaOsey(LgT,Lg_D);

Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10,

 Y0-round(Lg_D[i]*My-{KB*}{0.3}MinB*My)-2-10,

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10,

 Y0-round(Lg_D[i]*My-{KB*}MinB{0.3}*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Points_LgEta_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real;

 i:integer;

begin

kv:=kv+1;

if kv=1 then RazmetkaOsey(LgT,LgEta);

if kv=3 then RazmetkaOsey(LgT,LgEta123);

if kv=1 then Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

if kv=3 then Scale(LgT,LgEta123,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

 for i:=0 to kd-2 do

 begin

 if kv=1 then Form4.Image1.Canvas.Pen.Color:=clRed;

 if kv=2 then Form4.Image1.Canvas.Pen.Color:=clGreen;

 if kv=3 then Form4.Image1.Canvas.Pen.Color:=clBlue;

 Form4.Image1.Canvas.Pen.width:=2;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-3+10,

 Y0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-3-10,

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+3+10,

 Y0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+3-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Points_Eta_T;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real ;

 i:integer;

 T:TS;

begin

for i:=0 to kd-2 do

 begin

 T[i]:=power(10,LgT[i]);

 133

 end;

RazmetkaOsey(T,Eta);

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

 for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)-2+10,

 Y0-round(Eta[i]*My-{KB*}{0.3}MinB*My)-2-10,

 X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)+2+10,

 Y0-round(Eta[i]*My-{KB*}MinB{0.3}*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Points_3_LgEta_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real;

 i:integer;

begin

RazmetkaOsey(LgT,LgEta123);

Scale(LgT,LgEta123,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

 for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Pen.width:=2;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-3+10,

 Y0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-3-10,

 X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+3+10,

 Y0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+3-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure TForm4.Button1Click(Sender: TObject);

begin

OsiCoord;

if RadioButton1.Checked then Griphic_Lg_D_LgT;

if RadioButton2.Checked then Griphic_LgEta_LgT;

if RadioButton3.Checked then Griphic_Eta_T;

//RazmetkaOsey(LgT,Lg_D);

end;

procedure Approx_LgEta_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real;

 i:integer;

 Ma,Mb,hA,hB, Ac,Bc,Cc:real;

begin

 134

RazmetkaOsey(LgT,LgEta);

Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

MinSq(LgT,LgEta, Ac,Bc,Cc);

Form4.Image1.Canvas.MoveTo(X0+10,Y0-10-round(

 (Ac*MinA*MinA+Bc*MinA+Cc)*My-MinB*My)

);

 Form4.Edit1.Text:=FloatToStr(Ac);

 Form4.Edit2.Text:=FloatToStr(Bc);

 Form4.Edit3.Text:=FloatToStr(Cc);

for i:=1 to 101 do

 begin

 Form4.Image1.Canvas.LineTo

 (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,

 Y0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+

 Bc*(MinA+i*ShA/10)+Cc)*My-

 MinB*My)-10);

 end;

 for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-MinA*Mx)-2+10,

 Y0-round(LgEta[i]*My-MinB*My)-2-10,

 X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10,

 Y0-round(LgEta[i]*My-MinB*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Approx4_LgEta_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real;

 i:integer;

 Ma,Mb,hA,hB, Ac4,Bc4,Cc4,Dc4:real;

begin

RazmetkaOsey(LgT,LgEta);

Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

MinSq4(LgT,LgEta, Ac4,Bc4,Cc4,Dc4);

Form4.Image1.Canvas.MoveTo(X0+10,Y0-10-round(

 (Ac4*MinA*MinA*MinA+Bc4*MinA*MinA+Cc4*MinA+Dc4)*My

 -MinB*My)

);

 Form4.Edit1.Text:=FloatToStr(Ac4);

 Form4.Edit2.Text:=FloatToStr(Bc4);

 Form4.Edit3.Text:=FloatToStr(Cc4);

for i:=1 to 101 do

 begin

 Form4.Image1.Canvas.LineTo

 135

 (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,

 Y0-round((Ac4*(MinA+i*ShA/10)*(MinA+i*ShA/10)*(MinA+i*ShA/10)+

 Bc4*(MinA+i*ShA/10)*(MinA+i*ShA/10)+

 Cc4*(MinA+i*ShA/10)+Dc4)*My-

 MinB*My)-10);

 end;

 for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-MinA*Mx)-2+10,

 Y0-round(LgEta[i]*My-MinB*My)-2-10,

 X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10,

 Y0-round(LgEta[i]*My-MinB*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Approx_Eta_T;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real;

 i:integer;

 Ma,Mb,hA,hB, Ac,Bc,Cc:real;

 T:TS;

begin

for i:=0 to kd-2 do

 begin

 T[i]:=power(10,LgT[i]);

 end;

RazmetkaOsey(T,Eta);

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

MinSq(T,Eta, Ac,Bc,Cc);

Form4.Image1.Canvas.MoveTo(X0+10,Y0-10-round(

 (Ac*MinA*MinA+Bc*MinA+Cc)*My-MinB*My)

);

 Form4.Edit1.Text:=FloatToStr(Ac);

 Form4.Edit2.Text:=FloatToStr(Bc);

 Form4.Edit3.Text:=FloatToStr(Cc);

for i:=1 to 101 do

 begin

 Form4.Image1.Canvas.LineTo

 (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,

 Y0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+

 Bc*(MinA+i*ShA/10)+Cc)*My-

 MinB*My)-10);

 end;

 for i:=0 to kd-2 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 136

 X0+round(T[i]*Mx-MinA*Mx)-2+10,

 Y0-round(Eta[i]*My-MinB*My)-2-10,

 X0+round(T[i]*Mx-KA*MinA*Mx)+2+10,

 Y0-round(Eta[i]*My-MinB*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

procedure Approx_Lg_D_LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:real;

 i:integer;

 Ma,Mb,hA,hB, Ac,Bc,Cc:real;

begin

RazmetkaOsey(LgT,Lg_D);

Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

Form4.Image1.Canvas.MoveTo(

 X0+round(LgT[0]*Mx-MinA*Mx)+10,

 Y0-round(Lg_D[0]*My-MinB*My)-10

);

MinSq(LgT,Lg_D, Ac,Bc,Cc);

 Form4.Edit1.Text:=FloatToStr(Ac);

 Form4.Edit2.Text:=FloatToStr(Bc);

 Form4.Edit3.Text:=FloatToStr(Cc);

for i:=1 to 99 do

 begin

 Form4.Image1.Canvas.LineTo

 (X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,

 Y0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+

 Bc*(MinA+i*ShA/10)+Cc)*My-

 MinB*My)-10);

 end;

 for i:=0 to 9 do

 begin

 Form4.Image1.Canvas.Pen.Color:=clRed;

 Form4.Image1.Canvas.Ellipse(

 X0+round(LgT[i]*Mx-MinA*Mx)-2+10,

 Y0-round(Lg_D[i]*My-MinB*My)-2-10,

 X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10,

 Y0-round(Lg_D[i]*My-MinB*My)+2-10

);

 end;

 Form4.Image1.Canvas.Pen.Color:=clBlack;

end;

Unit6

procedure TForm6.FormCreate(Sender: TObject);

begin

x0:=-1000;

 137

y0:=2200;

Mx:=300;

My:=300;

kn:=0;

end;

function xk(xmat:real):integer;

begin

 xk:=trunc(x0+xmat*Mx);

end;

function yk(ymat:real):integer;

begin

 yk:=trunc(y0-ymat*My);

end;

procedure osi;

var i:integer;

 begin

 Form6.Image1.Canvas.Pen.Width:=1;

 //ShowMessage("0");

 Form6.Image1.Canvas.Pen.Color:=clWhite;

 Form6.Image1.Canvas.Rectangle(0,0,Form6.Image1.Width,Form6.Image1.Height);

 Form6.Image1.Canvas.Pen.Color:=clMoneyGreen;

 for i:=0 to 100 do

 begin

 Form6.Image1.Canvas.MoveTo(5,y0+i*My);

 Form6.Image1.Canvas.LineTo(Form6.Image1.Width-5,y0+i*My);

 Form6.Image1.Canvas.MoveTo(5,y0-i*My);

 Form6.Image1.Canvas.LineTo(Form6.Image1.Width-5,y0-i*My);

 Form6.Image1.Canvas.MoveTo(x0+i*Mx,5);

 Form6.Image1.Canvas.LineTo(x0+i*Mx,Form6.Image1.Height);

 Form6.Image1.Canvas.MoveTo(x0-i*Mx,5);

 Form6.Image1.Canvas.LineTo(x0-i*Mx,Form6.Image1.Height);

 end;

 Form6.Image1.Canvas.Pen.Color:=clBlack;

 Form6.Image1.Canvas.MoveTo(5,y0);

 Form6.Image1.Canvas.LineTo(Form6.Image1.Width-5,y0);

 Form6.Image1.Canvas.MoveTo(x0,5);

 Form6.Image1.Canvas.LineTo(x0,Form6.Image1.Height);

 end;

procedure vvod(c:STRING; var F_Tcp,F_S,F_LgT:TS);

var f:textfile;

i,j:integer;

begin

 assignfile(f,c);

 reset(f);

 readln(f,kd);

 //ShowMessage(IntToStr(kd));

 138

 for i:=0 to kd-1 do

 begin

 for j:=1 to kd do

 read(f,F_Tcp[i]);

 read(f,F_S[i]);

 read(f,F_LgT[i]);

 readln(f);

 end;

end;

procedure TForm6.Button1Click(Sender: TObject);

var i:integer;

 f:textfile;

begin

assignfile(f,'outinp.txt');

 reset(f);

 kd:=11;

 for i:=0 to kd-3 do

 begin

 for j:=1 to kd do

 readln(f,LgT[i]);

 readln(f);

 end;

 for i:=0 to kd-3 do

 begin

 read(f,LgEta1[i]);

 readln(f);

 end;

 for i:=0 to kd-3 do

 begin

 read(f,LgEta2[i]);

 readln(f);

 end;

 for i:=0 to kd-2 do

 begin

 read(f,LgEta3[i]);

 readln(f);

 end;

kn:=kn+1;

 osi;

 Form6.Image1.Canvas.Pen.width:=2;

 Form6.Image1.Canvas.Pen.Color:=clRed;

 for i:=0 to kd-3 do

 begin

 Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta1[i])-

3,xk(LgT[i])+3,yk(LgEta1[i])+3);

 end;

 Form6.Image1.Canvas.Pen.Color:=clGreen;

 for i:=0 to kd-3 do

 begin

 139

 Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta2[i])-

3,xk(LgT[i])+3,yk(LgEta2[i])+3);

 end;

 Form6.Image1.Canvas.Pen.Color:=clBlue;

 for i:=0 to kd-3 do

 begin

 Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta3[i])-

3,xk(LgT[i])+3,yk(LgEta3[i])+3);

 end;

end;

procedure TForm6.ScrollBar1Scroll(Sender: TObject; ScrollCode: TScrollCode;

 var ScrollPos: Integer);

 var i:integer;

begin

 Form6.Image1.Canvas.Pen.Color:=clWhite;

 Form6.Image1.Canvas.Rectangle(0,0,Image1.Width,Image1.Height);

Mx:=ScrollPos;

My:=ScrollPos;

osi;

for i:=0 to kd-1 do

 begin

 Form6.Image1.Canvas.Pen.Color:=clRed;

 Form6.Image1.Canvas.Pen.width:=2;

 Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta1[i])-

3,xk(LgT[i])+3,yk(LgEta1[i])+3);

 Form6.Image1.Canvas.Pen.Color:=clGreen;

 Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta2[i])-

3,xk(LgT[i])+3,yk(LgEta2[i])+3);

 Form6.Image1.Canvas.Pen.Color:=clBlue;

 Form6.Image1.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta3[i])-

3,xk(LgT[i])+3,yk(LgEta3[i])+3);

 end;

end;

end.

 140

Annex 14

 Basic procedures and functions for graphical display of calculation results

by mathematical model of polymer droplet deformation in flow

Unit3

procedure TForm3.FormShow(Sender: TObject);

Var

 i:integer;

 SX,SIX,SIY:Real;

 StepX,StepY:Real;

 OldX,OldY,NewX,NewY:integer;

 MasX:array [0..50] of Real;

 MasY:array [1..4,0..50] of Real;

 BY:Real;

 SY:Real;

 MaxY:integer;

 Z:integer;

 iii:integer;

 countL:integer;

 index:integer;

begin

 for i:=1 to 50 do

 MasX[i-1]:= strtofloat(form1.Memo1.Lines.Strings[i]);

 for i:=1 to form1.Memo3.Lines.Count-1 do

 begin

 if (i<51) then MasY[1][i-1]:= strtofloat(form1.Memo3.Lines.Strings[i]);

 if (i>=101) and (i<151) then MasY[2][i-101]:=

strtofloat(form1.Memo3.Lines.Strings[i]);

 if (i>=201) and(i<251) then MasY[3][i-201]:=

strtofloat(form1.Memo3.Lines.Strings[i]);

 if (i>=301) and (i<351) then MasY[4][i-301]:=

strtofloat(form1.Memo3.Lines.Strings[i]);

 end;

 Image1.Canvas.Pen.Color:=clBlack;

 Image1.Canvas.MoveTo(100,370);

 Image1.Canvas.LineTo(500,370);

 Image1.Canvas.MoveTo(100,370);

 Image1.Canvas.LineTo(100,0);

 Image1.Canvas.Pen.Color:=clBlack;

 SX:=MasX[49]-MasX[0];

 SY:=MasY[1][49]-MasY[1][0];

 if SY<MasY[2][49]-MasY[2][0] then SY:=MasY[2][49]-MasY[2][0];

 if SY<MasY[3][49]-MasY[3][0] then SY:=MasY[3][49]-MasY[3][0];

 if SY<MasY[4][49]-MasY[4][0] then SY:=MasY[4][49]-MasY[4][0];

 index:=1;

 while index<=CountI do

 for index:=1 to 4 do

 begin

 NewX:=round(100+MasX[0]);

 141

 NewY:=round(370-MasY[index][0]);

 Image1.Canvas.Pen.Width:=2;

 Image1.Canvas.MoveTo(NewX,NewY);

 Image1.Canvas.Pen.Color:=clRed;

 Image1.Canvas.LineTo(NewX,NewY);

 Image1.Canvas.TextOut(80,NewY,floattostr(round(MasY[index][0])));

 Image1.Canvas.Pen.Width:=1;

 Image1.Canvas.MoveTo(80,NewY);

 Image1.Canvas.LineTo(100,NewY);

 Image1.Canvas.TextOut(NewX,380,floattostr((MasX[0])));

 Image1.Canvas.MoveTo(NewX,370);

 Image1.Canvas.LineTo(NewX,380);

 Image1.Canvas.MoveTo(NewX,NewY);

 Image1.Canvas.Pen.Color:=clBlack;

 for i:=1 to 49 do

 begin

 Image1.Canvas.Pen.Width:=2;

 SIX:=MasX[i]-MasX[i-1];

 SIY:=MasY[index][i]-MasY[index][i-1];

 StepX:=(350*SIX)/SX;

 StepY:=(350*SIY)/SY;

 NewX:=Round(NewX+StepX);

 NewY:=Round(NewY-StepY);

 Image1.Canvas.LineTo(NewX,NewY);

 Image1.Canvas.Pen.Width:=5;

 Image1.Canvas.Pen.Color:=clRed;

 Image1.Canvas.LineTo(NewX,NewY);

 if i = 49 then

 begin

 Image1.Canvas.Pen.Width:=1;

 Image1.Canvas.TextOut(60,NewY-5,floattostr(round(MasY[index][i])));

 Image1.Canvas.MoveTo(80,NewY);

 Image1.Canvas.LineTo(100,NewY);

 Z:=round(MasY[index][i]);

 if MaxY>NewY then MaxY:=NewY;

 end;

 if i mod 10 = 0 then

 begin

 Image1.Canvas.Pen.Width:=1;

 Image1.Canvas.TextOut(NewX,380,floattostr(((MasX[i])*100000000)));

 Image1.Canvas.MoveTo(NewX,370);

 Image1.Canvas.LineTo(NewX,380);

 Image1.Canvas.MoveTo(NewX,NewY);

 end;

 end;

 if index=1 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Teta1 = ' +form8.edit1.text);

 if index=2 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Teta2 = ' +form8.edit4.text);

 if index=3 then

 142

 Image1.Canvas.TextOut(NewX+10,NewY,'Teta3 = ' +form8.edit5.text);

 if index=4 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Teta4 = ' +form8.edit6.text);

 inc(index);

 end;

 iii:=0;

 countL:=0;

 while iii<round(370-maxy) do

 begin

 iii:=iii+round((370-maxy)/20);

 Image1.Canvas.Pen.Width:=1;

 Z:=round((MaxY-iii)/MaxY);

 if countL mod 2 =0 then

 begin

 Image1.Canvas.MoveTo(90,370-iii);

 Image1.Canvas.LineTo(100,370-iii);

 end

 else

 begin

 Image1.Canvas.MoveTo(80,370-iii);

 Image1.Canvas.LineTo(100,370-iii);

 Image1.Canvas.TextOut(80,370-iii,floattostr(round((iii)*Z/(370-MaxY))));

 end;

 inc(countL);

 end;

end;

procedure TForm3.Button2Click(Sender: TObject);

begin

Image1.canvas.fillrect(Image1.canvas.cliprect);

form1.Memo3.Clear;

form1.Memo3.Text:='Пусто';

Image1.canvas.fillrect(Image1.canvas.cliprect);

Label1.Visible:=false;

Label2.Visible:=false;

 form1.Fr:=0;

 form1.eta:=0;

 form1.mu:=0;

 form1.R0:=0;

 form1.R0_3:=0;

 form1.d:=0;

 form1.d_:=0;

 form1.Teta0:=0;

 form1.CurrTeta:=0;

 form1.h:=0;

 form1.Q0:=0;

 form1.CurrQ:=0;

 Sigma:=0

end;

 143

procedure TForm3.Save1Click(Sender: TObject);

begin

 if SaveDialog1.Execute then

 Image1.Picture.SaveToFile(SaveDialog1.FileName+'.bmp');

end;

procedure TForm3.Print1Click(Sender: TObject);

var

 X1,X2,Y1,Y2:Integer;

 PointsX,PointsY:double;

 PrintDlg:TPrintDialog;

begin

 PrintDlg:=TPrintDialog.Create(Owner);

 if PrintDlg.Execute then

 begin

 Printer.BeginDoc;

 Printer.Canvas.Refresh;

 Printer.Title:='Results';

 PointsX:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSX)/100;

 PointsY:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSY)/100;

 X1:=50;

 Y1:=500;

 X2:=round(X1+Image1.Picture.Bitmap.Width*PointsX);

 Y2:=round(Y1+Image1.Picture.Bitmap.Height*PointsY);

 Printer.Canvas.CopyRect(Rect(X1,Y1,X2,Y2),Image1.Picture.Bitmap.Canvas,

 Rect(0,0,Image1.Picture.Bitmap.Width,Image1.Picture.Bitmap.Height));

 Printer.EndDoc;

 end;

 PrintDlg.Free;

 end;

end.

 Unit7

procedure TForm7.Button1Click(Sender: TObject);

begin

 form9.CountI:=0;

 if Edit1.Text<>'' then

 begin

 inc(form9.CountI);

 form1.Fr:=StrToFloat(form1.Edit4.Text);

 form1.eta:=StrToFloat(Edit3.Text);

 form1.mu:=StrToFloat(Edit2.Text);

 Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);

 V:=StrToFloat(Edit1.Text);

 R0_3:=V/((4/3)*3.1415);

R0:=power(R0_3,1/3);

form1.R0:=StrToFloat(form1.Edit12.Text);

 form1.R0_3:=form1.R0*form1.R0*form1.R0;

form1.V:=(4/3)*3.1415*form1.R0_3;

Form1.Edit1.Text:=FloatToStr(form1.V);

 144

 form1.d:=StrToFloat(form1.Edit10.Text);

 form1.d_:=StrToFloat(form1.Edit11.Text);

 form1.G:=G;

 form1.Teta0:=StrToFloat(Edit7.Text);

 form1.CurrTeta:=form1.Teta0;

 form1.h:=StrToFloat(form1.Edit8.Text);

 form1.Q0:=StrToFloat(form1.Edit5.Text);

 form1.CurrQ:=form1.Q0;

 Sigma:=StrToFloat(Edit1.text);

 K:=0.15e8;

 G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001)));

 form1.G:=G;

 Form7.Edit1.Text :=FloatToStr(G);

 form1.G:=StrToFloat(Edit1.Text);

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));

 form1.a0:=form1.R0*power(form1.CurrQ,2/3);

 A0:=StrToFloat(Edit5.Text);

 CurrA:=A0;

 B0:=power(R0*R0*R0/A0,1/2);

 q0:=A0/B0;}

 Form1.Button5.Click;

 end;

 if Edit4.Text<>'' then

 begin

 inc(form9.CountI);

 form1.Fr:=StrToFloat(form1.Edit4.Text);

 form1.eta:=StrToFloat(Edit3.Text);

 form1.mu:=StrToFloat(Edit2.Text);

 Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);

 V:=StrToFloat(Edit1.Text);

 R0_3:=V/((4/3)*3.1415);

R0:=power(R0_3,1/3);

form1.R0:=StrToFloat(form1.Edit12.Text);

 form1.R0_3:=form1.R0*form1.R0*form1.R0;

form1.V:=(4/3)*3.1415*form1.R0_3;

Form1.Edit1.Text:=FloatToStr(form1.V);

 form1.d:=StrToFloat(form1.Edit10.Text);

 form1.d_:=StrToFloat(form1.Edit11.Text);

 form1.G:=G;

 form1.G:=StrToFloat(Edit4.Text);

 form1.Teta0:=StrToFloat(Edit7.Text);

 form1.CurrTeta:=form1.Teta0;

 form1.h:=StrToFloat(form1.Edit8.Text);

 form1.Q0:=StrToFloat(form1.Edit5.Text);

 form1.CurrQ:=form1.Q0;

 Sigma:=StrToFloat(edit4.text);

 K:=0.15e8;

 G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001)));

 145

 form1.G:=G;

 Form7.Edit4.Text:=FloatToStr(G);

 form1.G:=StrToFloat(Edit4.Text);

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));

 form1.a0:=form1.R0*power(form1.CurrQ,2/3);

 Form1.Button5.Click; end;

 if Edit5.Text<>'' then

 begin

 inc(form9.CountI);

 form1.Fr:=StrToFloat(form1.Edit4.Text);

 form1.eta:=StrToFloat(Edit3.Text);

 form1.mu:=StrToFloat(Edit2.Text);

 Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);

 V:=StrToFloat(Edit1.Text);

 R0_3:=V/((4/3)*3.1415);

R0:=power(R0_3,1/3);

form1.R0:=StrToFloat(form1.Edit12.Text);

 form1.R0_3:=form1.R0*form1.R0*form1.R0;

form1.V:=(4/3)*3.1415*form1.R0_3;

Form1.Edit1.Text:=FloatToStr(form1.V);

form1.d:=StrToFloat(form1.Edit10.Text);

 form1.d_:=StrToFloat(form1.Edit11.Text);

 form1.G:=G;

 form1.G:=StrToFloat(Edit5.Text);

 form1.Teta0:=StrToFloat(Edit7.Text);

 form1.CurrTeta:=form1.Teta0;

 form1.h:=StrToFloat(form1.Edit8.Text);

 form1.Q0:=StrToFloat(form1.Edit5.Text);

 form1.CurrQ:=form1.Q0;

 Sigma:=StrToFloat(edit5.text);

 K:=0.15e8;

 G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001)));

 form1.G:=G;

 Form7.Edit5.Text:=FloatToStr(G);

 form1.G:=StrToFloat(Edit5.Text);

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));

 form1.a0:=form1.R0*power(form1.CurrQ,2/3);

 A0:=StrToFloat(Edit5.Text);

 CurrA:=A0;

 B0:=power(R0*R0*R0/A0,1/2);

 q0:=A0/B0;

 Form1.Button5.Click;

 end;

 if Edit6.Text<>'' then

 begin

 inc(form9.CountI);

 form1.Fr:=StrToFloat(form1.Edit4.Text);

 form1.eta:=StrToFloat(Edit3.Text);

 form1.mu:=StrToFloat(Edit2.Text);

 146

 Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);

 V:=StrToFloat(Edit1.Text);

 R0_3:=V/((4/3)*3.1415);

R0:=power(R0_3,1/3);

 form1.R0:=StrToFloat(form1.Edit12.Text);

 form1.R0_3:=form1.R0*form1.R0*form1.R0;

form1.V:=(4/3)*3.1415*form1.R0_3;

Form1.Edit1.Text:=FloatToStr(form1.V);

 form1.d:=StrToFloat(form1.Edit10.Text);

 form1.d_:=StrToFloat(form1.Edit11.Text);

 form1.G:=G;

 form1.G:=StrToFloat(Edit6.Text);

 form1.Teta0:=StrToFloat(Edit7.Text);

 form1.CurrTeta:=form1.Teta0;

 form1.h:=StrToFloat(form1.Edit8.Text);

 form1.Q0:=StrToFloat(form1.Edit5.Text);

 form1.CurrQ:=form1.Q0;

 Sigma:=StrToFloat(edit6.text);

 K:=0.15e8;

 G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001)));

 form1.G:=G;

form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));

 form1.a0:=form1.R0*power(form1.CurrQ,2/3);

 Form1.Button5.Click;end;

end;

Unit8

procedure TForm8.Button1Click(Sender: TObject);

begin

 if Edit1.Text<>'' then

 begin

 inc(form3.CountI);

 form1.Fr:=StrToFloat(form1.Edit4.Text);

 form1.eta:=StrToFloat(Edit3.Text);

 form1.mu:=StrToFloat(Edit2.Text);

 Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);

 V:=StrToFloat(Edit1.Text);

R0:=power(R0_3,1/3);

 form1.R0:=StrToFloat(form1.Edit12.Text);

 form1.R0_3:=form1.R0*form1.R0*form1.R0;

form1.V:=(4/3)*3.1415*form1.R0_3;

Form1.Edit1.Text:=FloatToStr(form1.V);

 form1.d:=StrToFloat(form1.Edit10.Text);

 form1.d_:=StrToFloat(form1.Edit11.Text);

 Sigma:=StrToFloat(edit7.text);

 K:=0.15e8;

 G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-

form1.Q0/(form1.CurrQ+0.0000001)));

 form1.G:=G;

 147

 form1.Teta0:=StrToFloat(Edit1.Text);

 form1.CurrTeta:=form1.Teta0;

 form1.h:=StrToFloat(form1.Edit8.Text);

 form1.Q0:=StrToFloat(form1.Edit5.Text);

 form1.CurrQ:=form1.Q0;

 form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));

 form1.a0:=form1.R0*power(form1.CurrQ,2/3);

 Form1.Button5.Click;

 end;

 if Edit4.Text<>'' then

 begin

 inc(form3.CountI);

 form1.Fr:=StrToFloat(form1.Edit4.Text);

 form1.eta:=StrToFloat(Edit3.Text);

 form1.mu:=StrToFloat(Edit2.Text);

 Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);

end;

end.

Unit9

procedure TForm9.Formshow(Sender: TObject);

Var

 i:integer;

 SX,SIX,SIY:Real;

 StepX,StepY:Real;

 OldX,OldY,NewX,NewY:integer;

 MasX:array [0..99] of Real;

 MasY:array [1..4,0..99] of Real;

 BY:Real;

 SY,Sigma,KG:Real;

 index:integer;

 MaxY:integer;

 Z:integer;

 iii:integer;

 countL:integer;

 begin

 for i:=1 to 100 do

 MasX[i-1]:= strtofloat(form1.Memo1.Lines.Strings[i]);

 for i:=1 to Form1.Memo3.Lines.Count-1 do

 begin

 if (i<101) then MasY[1][i-1]:= strtofloat(form1.Memo3.Lines.Strings[i]);

 if (i>=101) and (i<201) then MasY[2][i-101]:=

strtofloat(form1.Memo3.Lines.Strings[i]);

 if (i>=201) and(i<301) then MasY[3][i-201]:=

strtofloat(form1.Memo3.Lines.Strings[i]);

 if (i>=301) and (i<401) then MasY[4][i-301]:=

strtofloat(form1.Memo3.Lines.Strings[i]);

 end;

 Image1.Canvas.MoveTo(100,370);

 148

 Image1.Canvas.LineTo(500,370);

 Image1.Canvas.MoveTo(100,370);

 Image1.Canvas.LineTo(100,0);

 Image1.Canvas.Pen.Color:=clBlack;

 SX:=MasX[99]-MasX[0];

 SY:=MasY[1][99]-MasY[1][0];

 if SY<MasY[2][99]-MasY[2][0] then SY:=MasY[2][99]-MasY[2][0];

 if SY<MasY[3][99]-MasY[3][0] then SY:=MasY[3][99]-MasY[3][0];

 if SY<MasY[4][99]-MasY[4][0] then SY:=MasY[4][99]-MasY[4][0];

 index:=1;

 MaxY:=round(MasY[1][99]);

 while index<=CountI do

 for index:=1 to 4 do

 begin

 NewX:=round(100+MasX[0]);

 NewY:=round(370-MasY[index][0]);

 Image1.Canvas.Pen.Width:=5;

 Image1.Canvas.MoveTo(NewX,NewY);

 Image1.Canvas.Pen.Color:=clRed;

 Image1.Canvas.LineTo(NewX,NewY);

 Image1.Canvas.TextOut(80,NewY,floattostr(round(MasY[index][0])));

 Image1.Canvas.Pen.Width:=1;

 Image1.Canvas.MoveTo(80,NewY);

 Image1.Canvas.LineTo(100,NewY);

 Image1.Canvas.TextOut(NewX,380,floattostr((MasX[0])));

 Image1.Canvas.MoveTo(NewX,370);

 Image1.Canvas.LineTo(NewX,390);

 Image1.Canvas.MoveTo(NewX,NewY);

 for i:=1 to 99 do

 begin

 Image1.Canvas.Pen.Width:=3;

 SIX:=MasX[i]-MasX[i-1];

 SIY:=MasY[index][i]-MasY[index][i-1];

 StepX:=(350*SIX)/SX;

 StepY:=(350*SIY)/SY;

 NewX:=Round(NewX+StepX);

 NewY:=Round(NewY-StepY);

 Image1.Canvas.LineTo(NewX,NewY);

 Image1.Canvas.Pen.Width:=3;

 Image1.Canvas.Pen.Color:=clRed;

 Image1.Canvas.LineTo(NewX,NewY);

 if i = 99 then

 begin

 Image1.Canvas.Pen.Width:=1;

 Image1.Canvas.TextOut(80,NewY,floattostr(round(MasY[index][i])));

 Z:=round(MasY[index][i]);

 Image1.Canvas.MoveTo(80,NewY);

 Image1.Canvas.LineTo(100,NewY);

 if MaxY>NewY then MaxY:=NewY;

 end;

 149

 if i mod 10 = 0 then

 begin

 Image1.Canvas.Pen.Width:=1;

 Image1.Canvas.TextOut(NewX,380,floattostr(((MasX[i])*100000000)));

 Image1.Canvas.MoveTo(NewX,370);

 Image1.Canvas.LineTo(NewX,380);

 Image1.Canvas.MoveTo(NewX,NewY);

 Image1.Canvas.Pen.Color:=clBlack;

 end;

 end;

 if index=1 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Sigma1 = ' +form7.edit1.text);

 if index=2 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Sigma2 = ' +form7.edit4.text);

 if index=3 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Sigma3 = ' +form7.edit5.text);

 if index=4 then

 Image1.Canvas.TextOut(NewX+10,NewY,'Sigma4 = ' +form7.edit6.text);

 inc(index);

 end;

 iii:=0;

 countL:=0;

 while iii<round(370-maxy) do

 begin

 iii:=iii+round((370-maxy)/20);

 Image1.Canvas.Pen.Width:=1;

 Z:=round((MaxY-iii)/MaxY);

 if countL mod 2 =0 then

 begin

 Image1.Canvas.MoveTo(90,370-iii);

 Image1.Canvas.LineTo(100,370-iii);

 end

 else

 begin

 Image1.Canvas.MoveTo(80,370-iii);

 Image1.Canvas.LineTo(100,370-iii);

 Image1.Canvas.TextOut(80,370-iii,floattostr(round((iii)*Z/(370-MaxY))));

 end;

 inc(countL);

 end;

end;

procedure TForm9.Save1Click(Sender: TObject);

begin

 if SaveDialog1.Execute then

 Image1.Picture.SaveToFile(SaveDialog1.FileName+'.bmp');

end;

procedure TForm9.Print1Click(Sender: TObject);

 150

var

 X1,X2,Y1,Y2:Integer;

 PointsX,PointsY:double;

 PrintDlg:TPrintDialog;

begin

 PrintDlg:=TPrintDialog.Create(Owner);

 if PrintDlg.Execute then

 begin

 Printer.BeginDoc;

 Printer.Title:='Results';

 Printer.Canvas.Refresh;

 PointsX:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSX)/100;

 PointsY:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSY)/100;

 X1:=50;

 Y1:=500;

 X2:=round(X1+Image1.Picture.Bitmap.Width*PointsX);

 Y2:=round(Y1+Image1.Picture.Bitmap.Height*PointsY);

 Printer.Canvas.CopyRect(Rect(X1,Y1,X2,Y2),Image1.Picture.Bitmap.Canvas,

 Rect(0,0,Image1.Picture.Bitmap.Width,Image1.Picture.Bitmap.Height));

 Printer.EndDoc;

 end;

 PrintDlg.Free;

end;

end.

Наукове видання

Shcherban V.Yu., Rezanova V.G., Demkivska Т.І.

PROGRAMMING OF NUMERICAL
METHODS AND EXAMPLES OF

PRACTICAL APPLICAТION

Щербань Володимир Юрійович

Резанова Вікторія Георгієвна

Демківська Тетяна Іванівна

ПРОГРАМУВАННЯ ЧИСЕЛЬНИХ МЕТОДІВ

ТА ПРИКЛАДИ ПРАКТИЧНОГО

ЗАСТОСУВАННЯ

(англійською мовою)

Підписано до друку 15.12.2021 р.
Формат 60х84/16. Папір офсетний.

Ум. друк. арк. 8,83.
Наклад 1 ОО прим.

ФО-П Маслаков Руслан Олексійович

Свідоцтво про внесення суб'єкта видавничої справи
до державного реєстру видавців, виготівників

і розповсюджувачів видавничої продукції

ДК N24726 від 29.05.2014 р.
Тел. (095} 699-25-20.

E-mail: osvita2005@gmail.com.

ВД «Освіта УкраїнИ>>~

Видавничий дім «Освіта УкраїнИ>> запрошує авторів до співпраці

з випуску видань, що стосуються питань управління,

модернізації, інноваційних процесів, технологій, методичних

і методологічних аспектів освіти та навчального процесу

у вищих навчальних закладах.

Надаємо всі види видавничих та поліграфічних послуг.

	Binder1.pdf
	ScanImage001_1L

	Binder1.pdf
	ScanImage001_1L

	Binder1.pdf
	ScanImage001_1L

	Binder1.pdf
	ScanImage001_1L

	Binder2.pdf
	ScanImage001_1L

	Binder5.pdf
	ScanImage001_1L

