Ministry of education and science of
Ukraine

Kyiv national university of
technologies and design

e

__K@W& ﬂl Department of computer sciences
K| H|

PROGRAMMING OF NUMERICAL METHODS AND EXAMPLES OF PRACTICAL APPLICATION

Shcherban’ V. Yu.
Rezanova V.G.
Demkivska T.I.

PROGRAMMING OF
NUMERICAL METHODS AND
EXAMPLES OF PRACTICAL
APPLICATION



MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

KYIV NATIONAL UNIVERSITY OF TECHNOLOGIES AND DESIGN

Shcherban V.Yu., Rezanova V.G., Demkivska T.I.

PROGRAMMING OF NUMERICAL
METHODS AND EXAMPLES OF
PRACTICAL APPLICATION

Recommended by the Academic Council of the Kyiv National University of
Technology and Design (Protocol Ne 5 of December, 15, 2021)

Kyiv-2021



VIIK 004.42
BBK 65.9(4Ykp)306.4-6

1610

Recommended by the Academic Council of the Kyiv National University of Technology and
Design for a wide range of researchers, teachers and engineers (Protocol /e 5 of December,
15, 2021)

Authors:
SHCHERBAN’ V.Yu. — Laureate of the State Prize of Ukraine in the field of science and
technology, professor;
REZANOVA V.G. - Candidate of Technical Sciences, Associate Professor of the Department
of Computer Science, Kyiv National University of Technology and Design ;
DEMKIVSKA T.I. - Candidate of Technical Sciences, Associate Professor of the Department
of Computer Science, Kyiv National University of Technology and Design

Reviewers:
OPANASENKO V, M. - Laureate of the State Prize of Ukraine in the field of science and
technology, Doctor of Technical Sciences, Professor, Leading Research Fellow of the
Institute of Cybernetics of the National Academy of Sciences of Ukraine;
CHEPELYUK O. - Doctor of Technical Sciences, Professor, Head of the Department,
Kherson National Technical University;
KRASNITSKY S.M. - Doctor of Technical Sciences, Professor, Kyiv National University of
Technology and Design

101 610 Shcherban’ V.Yu., Rezanova V.G., Demkivska T.l. Programming of numerical methods and
examples of practical application. Monography. — K.: Education of Ukraine, 2021. — 150 c.

ISBN 978-617-8077-04-4

The monograph summarizes the experimental and theoretical developments of the
authors and describes the developed mathematical models and software for research in the
field of polymer composites with adjustable structure and properties. Particular attention is
paid to the created software.

The monograph is intended for teachers, scientists, graduate students majoring in
computer science and a wide range of engineers. The book can also be useful for senior
students and graduate students of these specialties.

VJIK 004.42
BBK 65.9(4Vkp)306.4-6

ISBN 978-617-8077-04-4 ©, V.Yu.Shcherban’, 2021
© Education of Ukraine, 2021



CONTENT

FOREWORD

PART 1. Numerical methods and their programming
1. Algebra of matrices. Calculating of determinants. Actions with
matrices.
2. Systems of linear equations (SLE), their solution by Kramer
formulas, the method of inverse matrix, the method of Gauss
3. Solving of SLE by iterative methods. Method of simple iterations.
Seidel method. Terms of convergence of iterative processes.
4. Transcendental equation with one variable. Separation of roots.
Clarification of roots (methods dichotomy, chords, tangents, simple
iterations)
5. Systemsof transcendental equations. The solution of two
nonlinear equations by Newton method
6. Differential equations. Methods for solving differential equations. .
Systems of differential equations
7. The characteristic determinant and characteristic equation of the
matrix. The eigenvalues and eigenvectors of matrices

8. Interpolation problem with simple nodes. Vector interpolation
problem with simple nodes

9. Bezier curves on the plane and in space

10. Linear and homogeneous coordinates on the plane

11. Basic conversion in the plane. The main symbol of affine
transformations.
12. The compositions of affine transformations on the plane.
13. Curves of the second order: representation by matrix and
invariants. Reduction of the second-order curve to the canonical
form. Classification of second-order curves
14. Output of second-order curves on display. Method of cross-
section . lterative algorithms displaying the curves of the second
order

PART 2. Practical application and Software
1. Mathematical modelling of dispersed phase
drop deformation in nano-filled polyner mixture melts

2.Planning the experiment and optimization of the content of
nanoadition in polypropylene monothreads

LITERATURE

ANNEX

6

21

25

31

37

40

49

56

60
63

67
73
75

84

92

98

105
109



FOREWORD

Analysis of the current state and prospects of the information technology
industry shows that active research has state priorities in countries with the most
developed economies. The implementation of their results changes the world
development trends in the direction of significantly expanding the capabilities of
a wide range of industries: chemistry, pharmaceuticals, pharmacology,
construction, aviation, aeronautics and astronautics, energy, defense, transport
and more.In studies of technical, technological, economic directions often have
to build and analyze mathematical models of real phenomena and processes.
Scientific problems of light industry are not an exceptions here.

In studies of technical, technological, economic directions often have to
build and analyze mathematical models of real phenomena and processes.
Scientific problems of light industry are not an exceptions here.

The purpose of mathematical modeling can be different. Often this
purpose is the prediction (forecasting) behavior of certain characteristics of
the objects. Types of mathematical models used are very different.

Of great importance are mathematical models in the form of differential
equations, which are one of the main instruments of study a variety of
phenomena and processes.

Linear algebraic equations does not necessarily serve as a means of
approximating. In many situations, they provide a direct description of the
phenomenon. These are, in particular, the situation are reduced to a certain
number of relations "balance™ type. Examples of this may be the problem of
balancing economic sectors, resource allocation (of different nature), some
electrical  circuits etc.

In mathematical modeling of the phenomenon often have to deal
nonlinear equations (algebraic or transcendental) or systems, and researchers

need to have available methods for solving such relationship.



By the very specific problems of mathematical modeling in light
industry refers selection of mathematical expressions to describe the various
curves and surfaces. These curves can be, for example, outlines the real parts of
articles of clothing or footwear, and surface - spatial fragments of such
products.

A number of important industrial and economic problems (not just light
industry) naturally united not so much the content as methods for their solution.

The goal of teaching monography is to study the application of
mathematical methods for solving complex problems using modern

computers.



PART 1. NUMERICAL METHODS AND THEIR
PROGRAMMING
1. Algebra of matrices. Calculating of determinants. Actions

with matrices
Key provisions
System of m*n numbers (real and complex), placed in a rectangular table

with m lines and n columns

A= 8y 858548y, (11)

is called the matrix (numerical).

The numbers a;(i=12,..,m;j=12,..,n), that make up this matrix, are

called its elements. The first index i means line number of the element, and the
second j — column number of it .
For matrix (1.1) is often used abbreviated representation

A:|.aijJ (i=12,..,m;j=12,..,n) abdo A:[aiij]n,

and they say that the matrix A is of type mxn.

If m=n, then matrix A is called square matrix of order n. If m=n, then
matrix is called rectangular. In particular, the matrix of type 1xn is called
vector-line and matrix of type mx1 — vector-column. Number (scalar) can be

viewed as a matrix of type 1x1. Square matrix

(2,0 0...0 |
0a,0...0
A= 2 (1.2)
|000...a, |

is called diagonal matrix.



If the a, =1(i=12,...,n), then matrix (1.2) is called the identity matrix
and is denoted by the letter £, i.e.

(100 ... 0]
010...0
E —
| OO0O 1 |
By entering Kronecker character
B 0, sxkwo 1+ j;
i 1, sxwo 1= |,

we can write: E =|5, |.
Matrix, all elements of which are zero, called zero-matrix and is denoted
by 0. To mark number of rows and columns of zero-matrix, they use

designation: O,,, .

For the square matrix A = [aij Jn‘n there is the determinant

a,a,,..a,
detA=la,a,..a,|.
a,a.,..a

n

We should not equate these two concepts: the matrix is an ordered system
of numbers recorded in the form of a rectangular table, and its determinant is a
number which can be defined by certain rules:

detA= > (-Da,a,, ..a, (1.3)

(a,a,..2,)
where the sum (1.3) includes all possible permutations («,,«, ...a,) of elements
1,2,...,n and contains n! of summand, and y =0, if an even permutation, and
x =1, if an odd permutation.

Actions with matrices
The equality of matrices



Two matrices A=|a,| and B=|o, | are considered as equal: A=B, if

they are of the same type, i. e. They have the same number of rows and columns,

and their respective elements are equal, i.e. a; =b,.

The sum of matrices

The sum of two matrices A=|a,| and B =|b, |of the same type is a matrix

C= [cijj of the same type, the elements of which c, are equal to the sums of

corresponding elements a, and b, of those matrices A and B, i.e. ¢, =a, +D,.

So,

A+B=

a‘ll + bll
a21 + b21

a. +b

| “m1 mi

alZ + b12
a22 + b22

a. +b

m2 m2

a'1n + b1n |
a2n + b2n

a'mn + bmn _

From the determination of the sum of two matrices immediately follows

its properties:

1) A+(B+C)=(A+B)+C;
2) A+B=B+ A,

3) A+0=A.

Similarly the difference of matrices is determinated :

A+B=

all - b11
a21 - b21
_aml - bml

a12 - b12
azz - bzz
a.—Db

m2

m2

aln - bln
a2n - bzn
amn - bmn ]

Multiply matrix by the number

The product of matrix A=|a,| by the number @ (or the product of the

number by matrix) is

matrix, the elements of which

are obtained by

multiplying all elements of the matrix A by that number «, so



od,, ad, oa,,
oa aa aa
Aa — aA — 21 22 2n
aa,, oa, oa |

From the determination of the product of the matrix by the number immediately

follows its properties:

1)
2)
3)
4)
5)

1A=A;

0A=0;

a(fh) = (ap)A,
(a+ B)A=cA+ PA;
a(A+B)=cA+oB

(here A and B — are matrices; a and 8 — are numbers).

Note, that if the matrix A - is a square order n, then
detaA=a"detA.
Matrix — A= (-=1)A is called opposite. Not difficult to see that if the matrix A

and B are of the same types, then A—B = A+ (—B).

Let

Multiply matrices

a, a, - a, W b11 12 bln
n Gy Ay, . b21 22 b2n
1 B=
a, a, A, J _bml bmz T bmn ]

-matrices of types mxn and pxq correspondingly. If the number of columns

of the matrix A equals the number of rows of the matrix B, i.e.

n=p,

then for these matrices is defined matrix C of type mxq, called their product:



Cy Cyp - Clq
C = Ch GCp - Czq ’
_le Cm2 T Cmq |

where Cy :ailblj +ai2b2j +---+a,b (l =12,---,m; J :1:2,"’,Q)-

in™nj

From the determination of the product of two matrices immediately
follows the rule to multiply matrices: to receive an element which is in i-th line
and j-th column of the product of two matrices, it is necessary to multiply
elements of i-th row of the first matrix by the respective elements of j-th
column of the second matrix and then to add obtained products.

The product AB has sense if and only if the matrix A has so many rows ,
how many columns has matrix B. In particular, it is possible to multiply square
matrices only of the same order.

In cases when AB=BA, matrices A and B are called rearrangement
(commutative). For example, it is easy to see that identity matrix E
rearrangement with any square matrix A of the same order, and

AE=EA=A

Thus, the identity matrix E plays a role of "one" in multiplication.

If A and B — are square matrices of the same order, then

det(AB) = det(BA) = det A-detB.
For example, for such matrices we have:

‘19 zzHl 2H5 6‘

43 50| |3 417 8
and

23 34| |1 2|5 6
31 46| |3 4|7 8|

10



Transposed matrix

If we change in matrix

a; ap a,
A=l 3y 3 .. %
aml am2 amn

of the type mxn the rows with corresponding colomns, we obtain so called

transposed matrix:

4; Ay
A=A = Ay Gy e Gy
am1 amz amn
of the type mxn. In particular, for vector-line az[a1 a .. an] the

transposed matrix is vector-column

Transposed matrix has such properties:
1)  the twice transposed matrix is the original one:
A'=(A)=A
2)  the transposed matrix of sum is equal to sum of transposed matrices:
(A+B)'=A+B';
3)  The transposed matrix of the product is equal to product of transposed
matrices:
(AB)'=B'A’;
Really, the element of i-th row and j-th colomn of matrix (AB)' is equal to the
element of j-th row and i-th colomn of matrix AB, i.e.:

a;by; +a;,b, +..+a;,b

jn™~ni*

11



The last expression is obviously the sum of the products of elements of i-th line
of matrix B' and respective elements of j-th column of the matrix A', that is
equal to the general element of matrix B'A'.
If matrix A —is square, then obviously
det A'=det A
Matrix A=[a;] is called symmetric, if it matches with its transposed, i.e. if:
A=A (1.4)
From equation (1.4) follows that: 1) symmetric matrix — is square (m=n) and 2)
its elements, which are symmetric relatively main diagonal, are equal to
each other, i.e.
a; =a.
The product C = AA', is obviously a symmetric matrix, so how
C'=(AA)'=(A) A= AA'=C.
The inverse matrix
Definition 1. Inverse matrix in relation to this matrix is a matrix, which is
being multiplied right and left side with this matrix gives the identity matrix.
For matrix A let's denote A™ - inverse matrix. Then according to the
definitioin we have:
AAT = ATA=E, (1.5)
where E — identity matrix.
Finding the inverse matrix to this is called inversion of the matrix.
A square matrix is called nonsingular if its determinant is different from
zero.
Otherwise matrix called special or singular.
Every nonsingular matrix has an inverse matrix.

Let's we have nonsingular matrix of n-th order

12



a, a, . a

where det A=A =0.

Let's construct for it so-called adjoint matrix

An Ay o Ay
;\: A12 A22 Anz

Aln AZn e Ann
where A; — algebraic additions (minors with signs) of the respective elements
a,(,j=12..n).
Note that the algebraic additions of elements of rows are plaved in
corresponding columns, so it is an operation of transposition.

Let's divide all elements of the last matrix on the value of determinant of
the matrix A, i.e.on A:

A Ay Au
A A A
R s TR Avz
A=A A 7 A
An A An
A AT A

Notes 1. For a given matrix A its inverse matrix A~ is only.
Notes 2. Special square matrix has not the inverse.

Some basic properties of the inverse matrix:
The determinant of inverse matrix is equal to the reciprocal of the

determinant of the original matrix.
Indeed, let
A7A=E
Given that the determinant of the product of two square matrices is the

product of determinants of matrices, we get:

13



det A det A =detE =1.
So,

detA™ = i,
det A

The inverse matrix of product of square matrices is the product of the
inverse matrices of multipliers, taken in reverse order, i.e.

(AB)'=B*A™
Indeed,

AB(B'A')=ABB!)A =AEA ' = AA' =E
and

(B*A*)AB=B*(A*AB=B'EB=B'B=E
So, B*A™ is inverse matrix to AB.

In more general

(AA,.A ) = ATAE AL

The transpose inverse matrix is equal to the inverse transpose matrix:

(A1) =(a)*
Indeed, if transposed  the main matrix equality A"A=E, we get:
(AA) =A(A) =E'=E.
Hence, multiplying last equality on the left on matrix (A’)*, will have:
(W) A(a?) =(a)'E
or
(a2) (&),
as was required to proof.
Note. The matrix equations are easily solved With the help of inverse

matrices.
Equations AX=B and YA =B.

14



Indeed, if detA=0,then X=A"B and Y=BA™.
Degree matrix
Let A -square matrix. If p - integer, the considered

AA..A = A",
%/_J
p—pas

Additionally set, that A°=E, where E - is identity matrix. If A is
nonsingular matrix, you can introduce the concept of a negative degree,
defining it by relation:

A7 =(A)
For degrees of the matrices with integer exponent are valid ordinary rules:
1) A7 A% = APYY,
2)(Ar) = AP,
Non-square matrix, as is known, not to be present degree.
Norm of the matrix

Inequality A<B between matrices A=[a,| and B=|o,| of the same

types means, that

Absolute value (modulus) of the matrix A=[a;] we will understand

matrix
[A]= Uau\]
where |a, | - are the modulus of elements of matrix A.

If 4 and B — are matrices, for which the operations A+B and 4B have
sense, then:
a)|A+ B|<|Al+|B|;
o)|AB| <|Al-[B
6)ah| =|a| A

(o — IS number)

)

In particular, we have

15



A%< 14"
(p — integer) .
The norm of the matrix A=|a;| means the real number |A|, which have

such properties:
a)|A|>0,]A|=0 iff 4=0

0)|eA| =|e||A| (e —number), _in_ particular,|- 4| = ||4]
6)|A+ B <[Al+|B]

2)|AB]<|Al-B]

(4 and B — are matrices, for which the appropriate operations have sense). In
particular, for square matrix we have:

[a]=1Al"
where p — integer.

Let's note another important inequality between the norms of matrices 4
and B of the same type. Using condition c), we have:

Bl =[A~-(B-A)<[A+[B-A

From here
|A=B]=[B—Al=B]-[A
Similarly,
|A=B]=|Al-[B]
So,  ||A-B|=[B[-|A]

Thereafter, for the matrix A:[aij] of arbitrary type we will consider three

main easyly calculated norms:

16



l)”A“m = m?x Z‘aij‘ (m—norm);
2)|Al, =max 3 [ay| (1 —norm);

3)|A|, = /izj:‘aij‘z (k —norm).

Rank of the matrix

We have a rectangular matrix

ay 8y, - ayy

a, a, ..a
A=| 2 “2 2n

| Qm @pg e A |

If in this matrix randomly select k rows and k columns, where
k<min(m, n), the elements that are at the intersection of this rows and columns,
are forming a square matrix of order k. The determinant of this matrix is called
the minor of k-th order matrix A.

Definition. The maximum order of minor of matrix , different from
zero, is called the rank of matrix.
In other words, the matrix A has rank r, if:

1) There is at least one minor of order r that is different from zero;

2) all the minors of matrix A of order r + 1 and higher are equal to zero.

Rank of the zero matrix, i.e. matrix consisting of zeros, is zero. The
difference between the smallest of the numbers m and n and rank is called the
defect of the matrix.

Elementary transformation matrices
The following transformation matrices are called elementary:
1)  permutation of two rows or columns;
2)  multiplication of all the elements of any row (column) on the same

number different from zero;

17



3) adding to the elements of a row (column) the elements of the other row
(column) multiplied by the same number.

Two matrices are called equivalent, if one can be obtained from another
through a finite number of elementary transformations. These matrices are not,
in general, equal, but have the same rank.

Easy to ensure, that each elementary transformation of a square matrix A
Is equivalent to multiplication last for some nonsingular matrix. However, if the
conversion is done on lines (columns) matrix A, the multiplier should be left
(right) and represent the result of the related elementary transformation to the
identity matrix.
For example, moving the matrix
a, a, a;
A=|a, a, a,
dy @, Ag
second and third lines, we obtain the equivalent matrix:

11 a12 a13

A= g1 Ay Qg |,

O v
=

21 a22 a23
The same matrix A can be obtained, if in identity matrix
1 00
E=/0 1 0
0 01
rearranged second and third lines
1
E=|0 0 1
010
and the resulting matrix multiply by the left side on the matrix 4, i.e. A=EA.
Similar way are performed other elementary transformation.
Note that if in the equation AA™=E we perform the same transformation

of rows of matrices A and E as long as the A is not converted into a identity

18



matrix, we will have EAA™=E, where E - — transformed the identity matrix.
Hence, i.e. EA=E, we have A'=E, i.e. the inverse matrix A™ is the converted
identity matrix. There is the method of calculation of inverse matrix is based on
this idea of converting lines.
Calculation of determinants
Elementary transformation matrices provide the most convenient method

of calculating the determinant of this matrix. Suppose, for example,

all a12 a‘1n
a a weooa
An — 21 22 2n
_anl an2 ann _

Assuming that a;; = 0, we have:

1 a, .. a
A L @
- a;, .. aj
An - all 1
nl
a, .. a,
| A i

Hence, subtracting from the elements a;;, which belong to the j-th column

(>=2) the relevant elements of the first column multiplied by ay;, we get:

1 O .. O
a
1 g0 . al
a
An =ay H = allAn—l
a
Lol Al
| i
where
INE) (@) @]
a22 a'23 a'2n
(@) (@) (@)
d;;, A3y ... g,
Anfl =
(@) (@) (@)
_an2 ay; .. Ay ]

19



a,a, .
and af’ =a;——1(i,j=23..,n).
11

Apply to the determinant A _, the same way. If all the elements
al™ #0(i=12,..,n),
then finally obtain:
A, =a,af..alh™
If in any determinant A, the upper left element al), , =0, we have to
rearrange the rows or columns of the determinant A__, that needed element was

different from zero (it is always possible if the determinant A=0). Of course,

you will need to consider changing the sign of the determinant A, .
It's possible to give more general rule. Let determinant A = det[a;]

is changed so, that ¢y . =1 (¢r,, — the main element), i.e.

11 1q 1j 1n
a'il ) a_lq alj ) ain
AL = e
a, -..1 a,l .. a,
anl anq e anj ann

~

Then A =EDPTA

where A =det[ "] — is the determinant of the (n - 1)-th order, which we

obtain from A Dby deleting p-th row and g-th colomn, followed by

conversion elements by the formula:

o_
Oii — i~ Oig Uy

20



I.e., each element Oti(,-l) of the determinant ZH equal to the corresponding
element . of determinant of the matrix Zn, reduced by the product of its
“projections” o, and ¢

on the erased column and row of the original determinant. Confirmation of this
statement easily follows from the general properties of determinants.
Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 1.

2. Systems of linear equations (SLE),
their solution by Kramer formulas,

the method of inverse matrix, Gauss method

General concepts and definitions
When conducting research of mechanical systems often have to face the
necessity of solving systems of linear equations.
In general, the system of linear equations can be represented as follows:
A, X +apX, +..+a, X, =b,
Ay X, + 83X, +on 8, X, =D,
(2.1)

Ay Xy + A, X, +o A X, =b

where a, (i=1,2,...,m; j =12,...,n) — coefficients of the unknowns;
X, (1=12,...,n) — unknowns;
b (i=12,...,m) — constants;

n — the number of unknowns in the system;

m — number of equations.

21



The system of equations (2.1) conveniently presented in vector form
AX =D (2.2)

where 4 — matrix of marpuris coefficients a; (i=12,..,m;j=12,..,n);

X = (Xg,...X,) — sought-for n - component vector;

b =(by,...,bm) — given m - component vector (vector right parts).

Tasks, that are reduced to solving systems of linear equations, generally
are mostly statically defined (number of unknowns equals the number of
possible equations, i.e. m = n). In this case, a system of linear equations (2.1)
can be represented as follows (coefficient matrix A is square):

a, X, +a,X, +..+a, X =b,
a, X, +a,X, +..+a, X =h,, 2.9

a, X +a,X, +..+a, X =b
For the square matrix A = [aij Jn _there is the determinant det A.

Determinant is a number which can be defined by certain rules:
detA= > (-Da,a,, ..a

(a,a,..a,)

na,

where the sum (3) includes all possible permutations («,,«,..«,) of elements
1,2,...,n and contains n! of summand, and y =0, if an even permutation, and
x =1, if an odd permutation.

The determinant of the coefficient matrix A can be denoted by one of the
following methods:

a,; dp ... Q
a a e a

A, = det A=|"% 22 2n (2.4)
a, 4a, .. a4,

If detA=0 the matrix A is called nondegenerate. If the system of
equations (2.3) has a solution, it is called compatible. Otherwise it will be called

imcompatible or contradictory.

22



If the right parts vector b is 0, the system (2.3) is called homogeneous.
Homogeneous system of equations always compatible. It has non-zero solutions
when det A=0.

If the system (2.3) has the only solution they say that the system of
equations is defined. If there are two or more solutions of the system it is called
uncertain.

The case when the determinant det A= 0 provides for the only solution.

Methods for solving systems of linear equations
Formulas of Kramer
The exact solution of system (2.3) in explicit form can be obtained using
formulas Kramer. The method consists in sequential dividing of the transformed
determinant (in which the coefficients of the corresponding column of the

system are replaced by column b,,b,,..b,) by the initial determinant composed

of elements of left side of equations (2.3). Thus, the vector of solutions of

%
XZ
system x=| | can be defined as follows:
_Xn_
% ™
X2 AZ
: 1 .
X = = —
: Al .| (2:5)
ES A,

23



a,...a,;,ba a

1,i+1***~"1n
a21"'a'2,i—1b2a2,i+1"'

where Ai=Z_l:Ajibj= — are the determinants,

a..a ba. . .a

Nl " =n,i—1n i+l " nn

obtained from the determinant A by replacing of its i-th column by column of
right parts of the system (2.3).
From equality (2.5 we obtain the formulas of Kramer

A
xlz—l,XZ:XZ,...,xn: A” (2.6)

Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 2.
Gauss method
The method of successive elimination of variables (Gauss method) is

based on the consistent lowering order of the system (2.3) by eliminating the
unknowns X, X,,...X_, in linear equations This results in obtaining of a
triangular coefficients matrix a; (i=12,..,m;j=12,..,n). This sequence of
procedures is the direct way exceptions variables. For its implementation must
consistently subtract from the first equation the other equations, multyplying

their left and right parts on the constant ratio, which is a share of the division of

constant coefficients m, =a; /a;, where i=12,...,n-1Lj=i+L1i+2,.,n. The

final system of equations on a direct way looks:

a, X, +a,X, +..+a,X +..+a,X =b

In""n
1 1 1 1
a," X, +..+a, "X +..+a,"x =b,"

" (2.7)

. _ a, .
where al” =a, —a,b,, (i, j=2), wherein b, :a—“ (j>2);
11
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(2)

as;

2 _ 4@ OR® (i i i (2 _ 731 P .

a,’ =a;’ —ayb,; (i,j=3), wherein b7 =—">- (j>3),1ie.
33

From the system (2.7) the solutions are obtained trivially.

Thus, the process of solving a linear system (2.3) by the method of Gauss
reduces to the construction of an equivalent system (2.7), which has a triangular
matrix. A necessary and sufficient condition for the applicability of the method
is that all the "leading elements" are not equal to zero. The process of finding
of the coefficients of the triangular system are usually called direct way, the
process of obtaining values of the unknowns - the back way.

Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 3.

3. Solving of SLE by iterative methods.
Method of simple iterations. Seidel method. Terms of convergence

of iterative processes
Method of simple iterations
With a large number of unknowns in linear system the Gauss method
scheme becomes very difficult. In these conditions, to find the roots of the
system is sometimes convenient to use approximate numerical methods. One of
these methods - the method of iteration.
Let's we have a linear system

a, X +a,X, +...+a,X, =b,,

Ay X, +8,X, +...+8,, X, =h,,

2nn

(3.1)

a X, +a.,X, +...+a,. X =b,

By entering into consideration matrix
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ay A X, _bl_

ay Ay a, X b
A= Leox=l ] b=l

_anl an2 a‘nn a Xn _bn B

system (3.1) can be briefly written as the matrix equation
AXx =D, (3.1)
Considering that the diagonal coefficients
a; #0 (=1 2, ..., n)
let's solve the first equation of system (3.1) relative x,, the second - a relatively
X, etc. Then get the equivalent system:

X, =B+ 0,X, X+ +ay, X

Xy = By + 0y Xy + Ay Xy + ...+ 0y X
(3.2)

X, =+ X +0,X, +...+a, X

* n,n-1"n-1?

! a. .
where g, :i; a; =——; wherein i= j

and o; =0 wherein i=j (i,j=1 2 ..., n).

After entering matrix

Q. Ay Qy, B
a o (04 .

o =| %2 ) o | B B, ’
Ay Oy (o2 B,

system (3.2) we can write in matrix form:
X = [+ axX (3.2)
The system (3.2) will be solved by successive approximations. As an

initial approximation let's take, for example, the right parts column x© = 3.
Then, gradually construct the vector- columns
X = g+ax®  (first approximation)

x? = pg+ax®  (second approximation) etc.
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Generally, any (k +1) —th approximation is calculated by the formula:
X = grax® k=0, 1 2 ..)
(3.3)
If the sequence of approximations x©, x®, ..., x®, ... has limit

x = limx®

k—o0

then the limit is a solution of system (3.2). Indeed, passing to the limit in
equality (3.3), we have:

x = limx® = g+ alimx®
k—o0 k—a0
or
X=/L+aoaX,

I.e. the limit vector X is the solution of system (3.2'), and thus the system (3.1).

Let's write the approximation formula in expanded form:

x(0) =B,

XD =B+ ayxW (3.3)
=1

(@, =0; i=1 .., n; k=0, 1 2 ..

Note that sometimes more convenient to convert system (3.1) to the form

(3.2) so that coefficients «; were not zero.

Overall, with the system

> a;X; =b, (i=12,..,n)
j=1
you can put:

— 5@® (2)

where a$?” == O . Then the system is equivalent to the reduced system

X; = p, +Zaijxj a=132,...,n),
=
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where

b, o Zij i : :
T a; =— , a;=——7p Wherein i = j
B ai(jl) ij a® 1) a®

i ij

Therefore, in further considerations we will not, in general, assume that
& =0.

The method of successive approximations determined by formula (3.3) or
(3.3"), is called method of iterations. The iteration process (3.3) converges good,
ie the number of approximations necessary to obtain roots of system (3.1) with
the required accuracy, is little if elements of matrix « are small in absolute
value. In other words, the successful process of iterations will be if modules of
the diagonal coefficients of system (3.1) are large compared with modules non-
diagonal coefficients of the system (free members play no role).

Remark. In applying the method of iterations it's no need for initial
approximation to accept a column of right parts. The convergence of the
iteration process depends on the properties of the matrix, and if this process
convergences with any choice of initial approximation of the home, it will be the
same to the same vector and with any other selection of initial approximation.
Therefore, in the initial vector iteration can be taken arbitrarily.

Software that implements the described algorithm has been developed
[26, 29, 32]. The text of the main program procedures is given in the appendix 4.

Seidel method
Seidel method is a modification of the method of iterations. Its main idea

is that in the calculation of («+1)-th approximation of unknown X; are
considered previously calculated («+1)-th approximation of unknown values

Xy, Xy, . Xig.

ey

Let's we have reduced linear system

X, =, +Zn:aijxj (i=12,..,n).
1
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Let's choose an arbitrary initial approximations of roots

y 2 9 seey

Onward, assuming that the « -th approximations of roots x are known,

according to Seidel we will build (x+1)-th approximation of roots by the

following formulas:

(k+1) _ﬂ +Zallx(k);

n
(k+1) (k+1) ().
= [, + o, X +Za2ij ’
=2

(k+1) __ k 1 (k) -
X =4 +Zau J+ +Za”XJ ’

XKD ,B+Za g x® (k=012,..).

nj N j & Xy

Usually Seidel method gives better convergence than simple iteration
method, but generally speaking, it leads to more cumbersome calculations.
Seidel process may be convergence, even if the iteration process diverges.

Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 5.

Terms of convergence of iterative processes

Let's we have reduced linear system:

X =oxX+ [ (3.4)
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A | %]
. X2
where @ =[a;], p=| . |- given matrix and vector and x =| . | —unknown
i | X, |

vector.
Theorem. The process of iteration for the reduced linear system (3.4)
converges to its the only solution, if any matrix « norm less than unity, i.e. for

the iteration process
X =g+ax®P  (k=12..)
(x© - arbitrary) is a sufficient condition for convergence
led|| <1 (3.5)
Let x* ta x®(k>1) — two successive approximation solution of linear system
X =ax+ £ . At p>1we have:

Hx(k+p) _ X(k)H < Hx(k+1) _ X(k)H n Hx(k+2) _ X(k+1)

|

(3.6)
Since x™P =ogx™ + 8 and x™ =ax™P + g, then
XM _xM — (x™ —x™DY)and hence:

R e R ]

Because of the formula (3.6) we obtain:

e~ xO <pet —xO] 1t e - x < L _1“a|| [x x|
Passing in the last inequality to the limit wherein p—oo, we obtain:

o < X7 = x|
[ = x| <

3.7
T (3.7)

at k>1, or

il

L
1= e

o x|

30



If in the process of calculation found that

_ 1—
Hx(lo IR 1)” < _qg’

q

where g =|la| <1, 10 [x —x®| <&, and,so |, —x*|<&
(i=1,2,.....n).

It is assumed that the successive approximation x) (j =04,..., k) calculated
accurately, that there are completely absent rounding error.
From formula (3.7), using obtained estimates for norm of difference of

two successive approximations, we have:

k
o] b )
1~

In particular, if you choose x® =2, o x® =af+ £ and
[x® = x| = lep]| < ]| B}

So, [x—x®[ <14

4. Transcendental equation with one variable. Separation of roots.
Clarification of roots (methods dichotomy, chords, tangents,

simple iterations)
Introductory provisions

Solving nonlinear equations of the form f (x) = 0 often can be done in

the next two stages. In the first stage of a rough definition of the root. Of course

this can be done graphical manner. The second stage means the root clarify . It is

often useful following famous theorem on the existence of a root of continuous
function.

Theorem. If the function f (x) is defined and continuous on the interval [a,

b], and on the ends of the segment takes values of different signs (so

f(a)f(b)<0), then in the interval (a, b) there is at least one root of the
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equation f (x) = 0. In other words, in these conditions, there is a point ¢, a <c

<b, such that the equality f (p) =0 justifies.

Solution of nonlinear equations
Separation of the roots
From the geometric point of view the real root of the equation
f(x)=0 (4.1)

is the abscissa of the point of intersection graph of y =f (x) with the axis OX
This note is used for graphic separation of roots of the equation (4.1) when this
equation has not closely roots, and the graph of y = f (X) constructed
accurately.
In practice, it is often convenient to replace the equation (4.1) with equivalent
equation

o(x)=y(x) (4.2)

where functions (p(x) and y(x) — are more easy than function f (x). Then,

construct graphics Y = (p(x) and Y = W(X), desired roots get as abscissa of the

point of intersection of these graphs.

Clarification of roots
Method dichotomy
Consider method division-on-half - method dichotomy. The method

consists in the construction of iterative sequence of nested segments, the ends of

which are the monotonous sequence {a }, {b.},and a <&, b >¢&, n=12..,
where ¢ - the root of the transcendental equation (4.1) on the segment [a, b].

The convergence of this method is slow. However, in any interval the

convergence is guaranteed.
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We assume that f(a)<0, f(b)>0. Then we find the middle of segment

[a,b] - point ¢ :aT+b_ Calculate the function f () in this point. Choose

one of the obtained segments where the condition f(a)f(&)<0 or
f(£)f(b)<0 justifies. The selected segment divide in half again by taking

a,=a, b =¢&or a =&, b =b, and then §2:a12+b1_

Continuing of iterative process of division allows you to obtain a

sequence of nested segments, and a_ <a_, <b ., <b . Left ends of segments

n+l —

form a monotonous sequence which in the limit represents the value z, :

lima, =z,

n—o0

and the right ends of segments form a monotonous sequence which in the limit

represents the value z,:

limb, =z,.

n—oo

Obviously,

b-a (4.4)

2 1 — "n n 2n'

This error does not exceed the length of the segment b, —a_ and goes to zero by

increasing n according to the law geometric progression with denominator 1/2.
Software that implements the described algorithm has been developed
[26, 29, 32]. The text of the main program procedures is given in the appendix 6,
1.
Newton's method (tangent)
Let's define the root of the transcendental equation (2.1) using Newton's
method (or the method of tangents). In figure 4.1 is shown a graphic scheme that

implements the method of Newton.
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J)

Fig. 4.1. Geometric interpretation of Newton's method of solving the transcendental equation

With the graphical method we determine the initial approximation of root of the

transcendent equation f (x) = 0. The equation of the tangent to the graph of

f (x) inthe point x, looks like

fK = f(xo)+ f'(XO)(X—XO) 1
(4.5)

where f'(x,) - value of derivative of the function f (x) at the point x,.
At x=x, f,=0.Then, from (4.5) we receive

f(x
X, = X, —M. (4.6)
f'(x,)
Continuing the process of constructing iterative sequence {x} , obtain the
following recurrent formula for the implementation of the iterative process of

approximation to the root of the transcendental equation

X =X — rx,) , n=012... 4.7)
f'(x,)

Newton's method, implemented by (4.6), has a high rate of convergence, but it is

very sensitive to the choice of initial approximation x, . Figure 4.5 shows that

the choice as the initial approximation x,, (point A on f(x), which is located
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further from the desired root &, than x,) leads at the first step to the "loss" the

point x, from limits of the interval [a,b].

If [f'()[=m>0, |f"(x)|<M, xe[ab] (m - the smallest value of derivative
f'(x) B [a,b] ; M - the largest value of derivative in [a,b] ), then there such
0:0<0< min(g—a,b—f) , that for any choice of initial approximation on the
interval  [£—5,&+&]e[a,b] there is an endless iterative sequence (4.6) and

this sequence convergences to the root of the transcendental equation
f(x)=0.

To evaluate the error of the n - th approximation x_ you can use the formula

(4.8)

1

where m, - the smallest value of the first derivative module in the

interval [a,b] .
Iterations method
One of the most important methods of numerical solution of
transcendental equations is the method of iterations (or - the method of
successive approximations or method of simple iterations).

Transcendental equation (2.1)

f(x)=0

present to the form

X = f (x) (4.9)

where f,(X)= f(X)+x.

Using graphical method, define the approximate value of the root x, from
the area of the function definition f (x) and substitute it in the right side of
equation (4.9). Let's build sequence {x_} of numbers, determined using iterative

formula
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X.,,=f(x), n=012,..

Sequence {x,} of numbers {x_ } is called iterative sequence. If there limx, = ¢,

N—o0

then passing in equity (4.9) to the limit and assuming function f(x) is

continuous, we obtain:
limx,, = f,(limx, ) a6o &= f,(&).

N—o0

From the last equality comes, that & will be the root of the transcendental

equation (4.9), and therefore, and equation (4.1). Iterative process continues

until justifies the condition

X X

n+1 n

> g, (4.10)
where & - 3agaHa noxubOka o04YKCICHHS KOpeHs & .
Before the proof of the convergence of iterative sequence dwell on Lipschitz
condition, which is as follows. Function f(x) satisfies Lipschitz if there exists a
constant q <1, thatany x,, X,, owned segment [a,b], performed inequality
1 (x)— f(x,)|<ax, —x,|
If the function of (4.1) satisfies (4.10), it is continuous on the interval [a,b] .

Give argument x the increment Ax. Using the Lipschitz condition, we get the

confirmation of continuity of functions f(x) on the interval [a,b].

|Af | < a|AX|,
limaf =0.
AX—>0

Theorem on the convergence of iterative sequence can be formulated as follows.

Suppose that the function f,(x) s defined and differentiated in the interval [a,b],

and all of its values are in [a,b]. Then using Lipschitz conditions

‘dfl (x)

g <g<1 (at a<x<b ) we obtain, that the iteration process x_, = f,(X,)
X

convergences regardless of the initial value x, e[a,b] and the limit value

& =limx_ is the only root of equation x = f,(x) on the interval [a,b].

nN—oo
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Let’s prove this statement. Take initial approximation solution of the

transcendental equation (4.1) x, on the interval [£—-0,&+ 6] , which is remote
from the point & at a distance of no more than & (\5— xo\ < ¢).Perform iterative

process using Lipschitz conditions and taking into account (4.9)

X, = fl(XO)’ X _§: fl(XO) - fl(g)’ )
‘Xl _f‘:‘fl(xo) - fl(f)‘gq‘xo _5‘ < q5:
‘Xz _é‘ :‘fl(XZ) - fl(g)‘ < q‘xl _g‘ < qz‘xo _é‘ < q25’ > (411)
X, —&<q"x, —&<q"s /

The theorem remains valid if the function f (x) is defined and differentiated in

the interval ]—oo,+oo[. To assess the approximations let's use inequality

< 9
1-q

X ., — X |

n+l n

‘é: - Xn+1

If q <% then come to (4.10). Finally

g = Xn+1 i &
Software that implements the described algorithm has been developed [26,

29, 32]. The text of the main program procedures is given in the appendix 8.

5. Systems of transcendental equations. The solution of two

nonlinear equations by Newton method
Systems of nonlinear equations
Consider a system of nonlinear equations

fl(xl’XZ""’Xn) =0

f (X0 X,) =0 (5.1)
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with real left parts.

Write shorter system (5.1). The set of arguments  x,,X,,...,X, can be seenas n-
dimensional column-vector x. Similarly, a set of functions f,f,,..., f is also
n -dimensional column-vector (vector function) f .

To solve the system (5.1') we will use the following method of successive

approximations. Suppose that k -th approximation was found

X = ("%, x. )

x=x" +¢® (5.2)

where ¢ =(5",&,,...,e. ")) - amendment (error) of the root.
Substituting expression (5.2) in equation (5.1 "), we have:

f(x“ +&%)=0.
Assuming that the function f(x) continuously differentiated in some area,
which contains x and x®, we decompose the left side of the last equation in

powers of the small vector £, leaving only the linear terms of the series:

(X +6%) = f(x)+ £/(x¥)s% =0 (5:3)

From equalities (5.3) follows that if denote W(x) the Jacobi matrix of the
derivatives of system of functions f,, f,,..., T relatively to variables

X, X X ie

13 Noay Ny

f'(x)_W(x)_{jfT‘}, L j=12,..,n,

]

the system (2.14 ") will be the linear system regarding modifications &

I1=12,...,n with the matrix W (x), and therefore formula (5.3) can be written a: (5.3)
f(x“)+W(x* e =0.
Hence, assuming that the matrix W(x") is nonsingular, we get:

£® = W (x®) f (x®).
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So,

X4 =xO WA xNf(xY) p=12,.. (5.4)
(5.4) — the Newton method.
For the initial approximation x® we can take rough approximation of the

desired root.
The Newton method for a system of two equations

Let X, ,Y, - approximated roots of the system of equations
F(x,y)=0
(X, Y) (5.5)
G(x,y)=0
where F and G - continuously differentiated functions. Suppose

X:Xn—i_hn; y:yn+kn’

we have:
F(X, y,)+hF(x,y,)+k F(Xx,y,)=0 5 6
G(x,,Y,) +hGi(x,,y,) +k.G (X, y,)=0 (5.6)
If Jacobian
J(X,,Y,)= R0y Ry *
v G:((Xn’yn) G;(Xn’yn) ’
then from system (5.6) we obtain

F(x.,y,) F/(X.,Y,
. 1 (X,:Y,) y,( y)’ 5.7)

‘J(Xn'yn) G(Xn’yn) Gy(xn’yn)

F/(X., F(X,,

N x,(xn ¥) F.y.) (5.8)

J(X,, ¥.) G (X, Y.)  G(X,,Y,)

So we can put:

F(x, F'(x,

oy -1 (X1 Y,) y,( ne 5.9
'J(Xn’yn) G(Xn’yn) Gy(xn’yn)
1 I:x,(xn’ yn) F (Xn’ yn) '
Y=Y, , (5.9)
J(X,, ¥.) (G (X, y,) G(X,,Y,)
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(n=012,...).
The condition for stopping the iterative process will be the following:

o=max(|h,|, |k,

: )<ég,
where ¢ - the given precision of solving the problem.
The initial values of roots are determined roughly approximated.
Software that implements the described algorithm has been developed

[26, 29, 32]. The text of the main program procedures is given in the appendix 9.

6. Differential equations. Methods for solving differential

equations. Systems of differential equations
Basic concepts

Differential equations - are such equations which containing derivatives
of the unknown function of one or more independent variables.

Equations containing derivatives by several independent variables, are
called differential equations with partial derivatives.

Equations containing derivatives of several independent variables, called
partial differential equations.

General view of the differential equation of n-th order is following:

F(x, YA A y(”)) = 0. (6.1)
This is an implicit form of differential equation. Explicitly form of the equation

of n-th order will be the equation which is solved relatively older derivate:

n _ n—1
Yy = (XY, Y, Yy ) (6.2)
Let the variable x takes values in the interval | c R =(—0, o). The solution

of the differential equation on the interval | is called such a differentiated in |
function y=¢(x), after setting to the equation it rotates in equality for all xel

(identity on the set 1). The chart of the solution of differential equations called
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the integral curve. The general solution of equation usually contains one free
numeric parameter and has the form

y=¢(x C) (6.3)
where C — said parameter, ¢ — any function. Equality (6.3) determines the
family of functions, whichdepend on the parameter C. Allocation of single
solution from a family of solutions (6.3) can be satisfied if the known initial
value y(xo) =Yo for some x, €l.

The general solution of equation (6.1) or (6.2) is a family of functions of

form:

y =@ (X, Cy,...,Cp), (6.4)
where C,,...,C, — numeric parameters that are called arbitrary constant, and
each function of the family is a solution of equation (at some numerical
interval). Parameters Cy,...,C, can be determined by the initial conditions of the
form Y(X0) = Y10,- .Y P (X0) = Yno-

There are situations where solutions of differential equations in explicit
form (6.3), (6.4) can not get, but can be found the so-called general integrals, or
general solutions of these equations. Thus the general integral differential of the
equation (6.1) or (6.2) is the equation which is not an identity

w(x,v,C,,C,,..,C, )=0, (6.3a)

The function yis also called a general integral equation.

Existence and uniqueness of solutions of differential equations of the first and
n-th order
We further consider equations solved relatively senior derivative.

Consider the equation of the first order
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y'=f(xy).
Let function f(x,y) is defined in some open area D of the plane XOY (Fig.

6.1), the interval 1 is a subset of D projection on the set R. Let in D is the point

M with coordinates (X,,Y,) (xo€l).

O
M(Xo;Y0)

v

8

D/

Fig. 4.1. Geometric interpretation of solutions of differential equations

The problem: to find in the interval | the solution of the equation, integral curve
of which passes through the point M, i.e. to find a function y = ¢ (x), x € I,
satisfying the initial condition
y‘x:x0 - (D(XO) = Yo. (65)

This problem is called the Cauchy problem. The following theorem formulated
conditions of existence and uniqueness of "local” solution to this problem.

1 Existence and uniqueness. If the function f(x,y) is defined and
continuous in D with its partial derivate 2—f then for any point M(Xo, Yo),

y

owned area D, exists the interval I, containing a point X, and in which is defined
and the unique solution y=¢(x) of the equation, which satisfies the initial
condition (6.5).

Under the uniqueness of the solution is to understand the following: if

there are two solutions of the equation which are the same at the point Xo, then

the solutions coincide on the common part of interval of their definition.
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Geometrically in theorem states that under the conditions of the theorem
through each point inside the area D is the only integrated curve.

Now formulate theorem which is the analog for previous for the
equation of n-th order solved relatively senior derivative (of the form (6.2)) with
initial conditions:

(n-1) (n-1)

yx:xozyo;y' x=x0:y'0""’y X=X :yO

2 Existence and uniqueness. If the function f(x,y,z,25,...,Z,4), Which

(6.6)

depends upon n+1 variables X, vy, zi,..., z,1, defined and continuous in some

o _ of of of of
. — e
(n+1)-measurable area D together with its derivates oy oz o,

then for any point M(X,,Y,, Yy, Yor-- Y 7) that belongs to the area
M (Xy, Yy» Yor Ygoren Yor ) D, exists the interval 1, containing a point x, and in
which is defined and the only solution y=¢@(x) of the equation (6.2), that

satisfies the initial condition (6.6).

The concept of uniqueness of the solution in this theorem is the same as in
the previous.

From 1, 2, it follows that on their conditions if the presence of general
solution of equation (6.2) in the form (6.4):

y= @ (XCy...,C)
constants C,,C,,...,C_ are defined uniquely by initial conditions (6.6) for an

arbitrary vector (Xo, Yo, Yo»- .., Yo" ) € D, i.e. the system of equations

(6.7)

has a unique solution. Conversely, if for an arbitrary vector (Xo,Yo,Yo's.- -, Yo" ™)
system (6.7) has a unique solution, then the Cauchy problem (6.2), (6.6) has a

unique solution for any point M eD.
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The conditions imposed in theorems 1.2 on the right sides of equations
(6.2) sufficient for the existence and uniqueness of solutions to the equation. For
the existence of local solutions (such referred to Theorem 2) is sufficient to
require continuity of f in the area D..

Methods for solving differential equations

Problem solving ordinary differential equations in the general case is
more complicated than the problem dealing with calculation of single integrals,
and therefore the fate of cases of explicitly integration here is much lower.

Numerical methods for solving differential equations can be divided into
two classes. One of them includes methods that use one starting value of
solution at every step, and the other methods use multiple values at every turn
(multistep methods). The last are characterized that on the basis of earlier got a
few values of function are built the new which are then specified with
differential equations.

The first class include Runge - Kutta methods, including methods of Euler
- Cauchy and trapezoids. The second include, for example, the method of
Adams, Adams-Krylov method.

Consider first the Euler-Cauchy method.

Let is given the differential equation

dy
- = f ’ .
™ x,y), (6.8)
where (X, y) belongs to area G with the initial condition
X = Xo, Yo = Y(Xo) (6.8")

Method of constructing an approximate solution of the Cauchy problem (6.8),
(6.8') is based on the concept of so-called Euler polyline. Euler polyline is a
graph of piecewise linear function that is built based on the following rule. Let h
— small positive number (step of method). Consider a Cartesian plane point

with coordinates ( Xy, y1), where

X1 =X + h, y1 = Yo + hf (Xo, Yo).
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Note that, according to Taylor's formula, thanks to equality (6.8), (6.8") vy, -
value can be seen as approaching of the values of the solution y(x;) of Cauchy
problem. If the point (x;, y;) belongs to set G, then we continue to build on
inductive rule Yi+1=Y;+hf(x;,y),i=0,1,2,....Each value vy, is
seen as approximation to the value of the desired solution y at the point x;. So we
get a sequence of points (x;, y;), i=0,1,2,..., where all x; are situated on right
of the point x,. A similar construction, if necessary, carry out and on left of point
Xo. According to this sequence we build piecewise-linear function

yX) =y + (X, V)X =%), X e[ X, Xi+1/, =0, 1, 2,...,
which (or its chart) is called the Euler polyline. There are several theories that
guarantee that under certain conditions the Euler polyline aims to the solution
of the Cauchy problem (3.10), (3.10’), when the method step h aims to 0.
Graphical representation of the calculation scheme of the method Euler -
Cauchy shown in Fig. 6.2.

AY

1 — Integral curve;
2 — Euler polvline

- Mp-1! !
Yoy ) ! ' Y= y(x,) Y oY 1)§ i);f)'(-\;l)
) : h : h o T X

: L . - . >

*0 *1  *2 Xn-1 *n

Puc. 6.2. Calculation scheme of the Euler - Cauchy method

Let's given the differential equation

dy
— = f(x,y). (6.8)

dx
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Need to find an approximate solution (6.8) at the points with coordinates

X, =X, +h, X,=x,+2h,..Xx =x,+nh, where h - constant pitch; x, -

coordinate of start point of interval.

The initial condition x =X,, Y, =Y(X,) . The approximate value of the first
derivative has the form

dyk ~ Ayk — Yia — Yi (69)
dx, ~ AX h

k k

where k=0,1..n-1.
Equating (6.8) and (6.9), we obtain:

%: f(Xk, yk)’

from whence:

Yia = Y +DE (X, Y,)- (6.10)
Using the recurrence formula (6.10) for points k =0,1...n—1 we build the Euler
polyline 2, which replaces approximately the integral curve 1 (see. fig.6.2). The

gist of Euler-Cauchy method is that in the beginning of each interval [x,,x,.,]

we held tangent to the integral curve 1.

The accuracy of the method Euler-Cauchy is small. The error of method is
proportional to h?.
A variation of the method of Euler-Cauchy is the trapezoidal method. It is

implemented at each step using recurrent formula
h
Yeu =Y E{f (Xk ’ yk) + f|:Xk +h Yo t ht (Xk 1 yk):|} (6.11)

The error of the trapezoidal method is proportional to h® and it also
includes the general methods of Runge-Kutta.

Multi-step solving of differential equations (finite-difference methods) are
based on the using of the rezults of solving of the previous steps. This can

increase the speed of computing. For the realization of the finite-difference
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methods for the numerical integration of differential equations need to know the

function and its derivatives at several points close to the original. Here we can

mark Picard method and the method of decomposition.
Systems of differential equations

The aggregate of mutual relations
(F.(X, Yy Yir Vi ¥2) =0
J F, (X, Yy Yio Yireen Y2 ) =0

F (X, Yy ¥ Vi ¥ ) =0

(6.12)

where Xx- independent variable, y,,v,,...,y, - unknown functions of x,
F.F,,...., — known function, called a system of first order differential

equations. The solution of this system are functions vy, (x),y,(x),...,Y,(X),
which when substituted in (6.12) turn the system on identity.

If the system of differential equations (6.12) admits the possibility of solving

relatively derivatives, we get a system

(d
dyl = f,(X ¥, Yo YLD
dyX
2=, Y, Y, Y,
L dx (X, Y, Y Y.)

(6.13)

d
% - fn (X, yl’ y2""’ y“)
L AX

which is called normal.
An example of one normal equation of first order is

dy
—=f(x,y).
4 1Y)

This equation gives the field of directions in the plane x,y. The solution of the

equation is the one-parameter family of curves, located in one plane. If on this
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plane is given point (X,,Yy,) and functions f(x,y), % — continious, then the

equation has a unique solution that satisfies the initial conditions y(x,) =Y,.

Now, take two equations

dy, d

dl: fl(xiyl’yz) _y: fl(X,y,Z)

dyX or g;( .
L= fZ(X’yl’yZ) Y fZ(X’y’Z)

dx dx

Under certain conditions, we get the solution
yl:y:(ol(x); y2=Z=(p2(X)_
This solutions can be regarded as parametric equations of the curve in the spatial

coordinate system X,y,z.

Thus, the solution of one equation can be represented as the curve in two-
dimensional space. Solution of two equations of the first order can be visualized
by the curve in three dimensions. Solution of n equations of the first order

forms a curve in the (n+1)-dimensional space. These curves are called integral

curves.
The numerical solution of systems of differential equations is carried out
similarly solving a differential equation.
Software that implements the described algorithm has been developed
[26, 29, 32]. The text of the main program procedures is given in the appendix
10.
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7. The characteristic determinant and characteristic equation of

the matrix. The eigenvalues and eigenvectors of matrices

The characteristic determinant
and characteristic equation of the matrix

Let's we have a square matrix A =|A, |. Consider a linear transformation

y = AX, (7.1)

where x and y — n-dimensional vectors of some n-dimensional space.
Definitions. Nonzero vector called eigenvector of the matrix, if in the
result of the corresponding linear transformation this vector becomes the
collinear to it, i.e. the converted vector is different from the original only by
scalar multiplier.
In other words, a vector x =0 is called eigenvector matrix A, if the matrix
transforms the vector x in the vector AX :
AX = AX (7.2)
The number & of equality (7.2) is called eigenvalues or characteristic

number of the matrix A, appropriate the eigenvector X.
(A—AE)x =0, (7.3)
Where matrix A-AE called characteristic matrix. Equation (7.3) is a
linear homogeneous system that has nonzero solution if and only if the
determinant of the system is zero, ie when the condition
det(A—AE) =0. (7.4)
The determinant (7.4) is called the characteristic determinant of matrix

A, and the equation (7.4) is called the characteristic equation of A. In expanded

form the characteristic equation (7.4) can be written as follows:

a; -4 a;, a,
8y 8y, -4 & -0 (7.4,)
a‘nl an2 ann -
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or
Ao+ A -+ ()" o, A+ (-)"c, =0 (7.5)
Polynom, which is standing in the left side of the equation (7.5) is called the

characteristic polynom of matrix A. Its coefficients o, (i =1.2,..,n) are determined

by the following rules. Coefficient o, is equal to the sum of the diagonal

elements of the matrix A, i.e. al=zn:aii. This number is called the track of

i=1
matrix A and denoted: o, = SpA. Coefficient o, is the sum of all the diagonal

minors of the second order of the matrix A. Generally, coefficient o, is the sum

of all the diagonal minors of the k-th order of the matrix A. Finally, free term

o, i1s equal to the determinant of the matrix A: o, =detA

Characteristic equation (7.5) is an algebraic equation of n-th degree

relative 2 and has at least one real or complex root. Let A,4,,...,4,(m<n) -

different roots of equation (7.5). These roots are called eigenvalues or
characteristic numbers of the matrix, and the set of all eigenvalues are called the

spectrum of matrix A. Let's take any root A=A, and substitute it in equation

(7.4). Then we have (A-4,E)x=0 or, in an expanded form,

1n*n

(@ —A))X +apX, +...+a, X, =0,

Ay X, +(ay —A))X, +...+ay X, =0,

2n*n

(7.6)

Xy +8,,%, +...+ (@, —4;)X, =0.

Since the determinant of the system (7.6) det(A—A,E) =0, then this system

has non-zero solutions which are the eigenvectors of matrix A corresponding to

its eigenvalues 4. If the rank of the matrix A-4,- is equal r(r <n), then exist

k=n-r linearly independent eigenvectors x“”,x@V, .. x®, corresponding to 4,

Remark. We can prove that the number of linearly independent

eigenvectors does not exceed the multiplicity of this root. It follows that if the

50



roots of the characteristic equation (7.5) are different, each eigenvalues
corresponds to within a proportionality factor one and only one eigenvector.
Finding eigenvalues and eigenvectors matrix
Introductory remarks

In solving theoretical and practical problems it is often necessary to
determine the eigenvalues of matrix, which means calculate the roots of its
characteristic equation det(A-AE)=0 and find the corresponding
eigenvectors of matrix A. The second problem is more easier: if the roots of the
characteristic equation are known, then the calculation of eigenvectors reduced
to finding of some nonzero solutions of homogeneous linear systems.
Therefore, we  will first deal with the first problem - calculation the roots of
characteristic equation.

Here it is mainly used two methods:

1) deployment of characteristic determinant to the polynom of n-th
degree: D(1)=det(A-AE) with following solving of the equation D(1)=0 with
one of the known approximated methods and

2) an approximate determination of the roots of the characteristic equation
without prior deployment of characteristic determinant.

Deploying characteristic determinants

May have characteristic determinant of matrix A=|a, | as following:

a11 - 2’ a12 a'ln
D(1)=det(A—4E)=| P B2z P
A Ay, T

Equating this determinant to zero, we obtain the characteristic equation
D(1)=0.
If you want to find all the roots of the characteristic equation, it is advisable
to pre-disclose determinant.

Deploying the determinant, get the polynom of n-th degree:
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DA)=(-1)'(A" —o A+, —..+ (-1 7)),

where: o, =>"a,, - the sum of the diagonal elements of the matrix A;

a=1

0, =Y

a<fp

a . .
a““ a“f" - the sum of all the diagonal minors of the second
Pa 2

order of the matrix A;

a a a

ao aff oy
o, = Zﬂ: a,, a, a,| - the sum of all the diagonal minors of the
a<p<y
a  Qp By

third order of the matrix A;
and finally, o, = det A
It is easy to ensure that the number of the diagonal minors of k- th order of
matrix A equals:

c = n(n—l)...k(ln—k+1) (k=12..n)

Hence we find that the calculating of the coefficients of characteristic polynom
is equivalent to calculation of Cl4C24..+C"=2"-1 determinants of different
order. The latest problem, generally speaking, is technically difficult
implemented for large values of n. Therefore created special methods for

deployment of characteristic determinants.

O.M. Krylov method
Let
D(1)=det(JE - A)= 2"+ p, A" +...+ p, (7.7)
characteristic polynom (up to sign) of matrix A.
According to the identity of Hamilton-Cayley, matrix A turns in a zero its

characteristic polynom, so

A"+ p, A" +...+p,E=0.
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v
Take arbitrary nonzero vector y® =| :

yl

Multiplying both parts of (7.8) on the right on y(o) , We get:

ATy + p ATy 4,y =0, (7.8)
Let's set
Ay =y =12 n), (7.9)
then equation (7.8) takes the form:
vy +py" P4+ +py? =0 (7.10)
or
Yy 0 e ] (]
iy o e ||y 710
Ly oy YO p, ] [y
[y ]
where Y =2 | (k=0412,...,n)
Yy

Thus, the vector equality (7.10) is equivalent to the system of equations:

plyg”‘l) + pzyg”‘z) o pnygo) = —ygo) (j=12,...n)
from which, generally speaking, we can determine the unknown coefficients
Pis Pos---s Py

So based on the formula (7.9): y®% =ay®? (k=12,...,n), the coordinates

yU )yl vy of vector y™ are sequentially calculated by the formula:
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(7.11)

Thus, according to by Krylov method, calculating of the coefficients of
the characteristic polynom (7.7) is reduced to solving a linear system of
equations (7.10), the coefficients of which are calculated by formulas (7.11).
And coordinates of the initial vector

y

y

y© =
are arbitrary. If the system (7.10) has a unique solution, then its roots
P P,,--., P, are the characteristic polynomial (7.7) coefficients. This solution
can be found, for example, the method of Gauss. If the system (6) has no unique
solution, the problem is complicated. In this case, it is recommended to change
the initial vector.
Leverier method
This method of deployment of the characteristic determinant is based on
Newton formulas for sums of powers of the roots of algebraic equations.
Let
det(AE—A) = A"+ pA" " +...+ p, (7.12)

— characteristic polynom of the matrix A=|[a;] and 4,4,,...,4,— complete

aggregate of its roots, where each root is repeated as many times as its
multiplicity.
Suppose S, = A+ A+ + A (k=012,...,n).

Then, at £ <n Newton's formulas justify:

54



Sy + PSyy -+ P 1S, =—Kp, (k=012,..,n) (7.13)

From here:
P =-S5,
pz __(32 + plsl)’
.................................................... (7.14)
1
pn :_H(Sn + plsn—l +...+ pn—lsl)'
If the sums S;,S,,---,S, are known, then using formulas (7.14) we can step by

step determine the coefficients p,, p,,..., p, 0f the characteristic polynom (7.12).

The sums S;,S,,...,S, are calculated as following: for s, we have:
s =A4+A4+..+4 =5SpA, ie.
St =2 8- (7.15)
i=1
Further, as we know, 4, A} ,...,A* are the eigenvalues of matrix A*. So
S, = A+ A +...+ A =SpA, thatis, if A* :[aﬁk)], then
" 0
S = Zaii : (7.16)
i=1
Degrees A“ = A“*A are calculated by direct multiplication.
Thus, the scheme of deployment of characteristic determinant by Leverier

method is very simple, namely:

calculation of degrees A“ (k=12,...,n) of matrix A,

then are found the corresponding S, - sums of the elements of main
diagonals matrix A*,

and, finally, by formulas (7.14) determine the unknown coefficients p,

(i=12,..,n).
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Leverier method rather laborious because of counting the high degrees of
matrix. Its main advantage - easy scheme of calculation and the absence of

exceptional situations.

8. Interpolation problem with simple nodes. Vector interpolation

problem with simple nodes
Formulation of the problem of interpolation
In the most general case the interpolation problem consists in constructing
such a function F(x), which in the given points x,,X,X,,...x, gets values
f(x,), f(x), f(x,),...f(x ) of given function f(x), and at other points of interval
[a,b] approximates it. Function F(x) is called interpolating function towards
f(x).
Let in the interval [a,b] are given n+1 points x,,X,,...X,, which are
called interpolation nodes, and the values of a function f (x) at these points
f(X)=Y, f(X)=VY,..T(X)=Y,. (8.1)
We must construct a function F(x) , which belongs to the known class and
takes in the interpolation nodes the same values as f(x), i.e. such that
F(x,)=Y,,F(X)=VY,,-.F(X,))=Y.. (8.2)
Geometrically this means that you need to find the curve y=F(x) of a
certain type, which is passing through a given system of points M, (X,,Y,)
(i=012,..)
In this general formulation, the problem can have many solutions or do
not have any.

However, this task becomes unambiguous, if instead of an arbitrary

function F(x) we search the polynom P (x) of degree not greater than n,

satisfying the condition (8.2), i.e. such as P,(X,) =Y,,P, (X)) =V¥,,....P,(X,) = Y,.
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The obtained interpolation formula y=F(x) is usually used for
calculating approximate values of the function f(x) for values of the argument

x that differs from interpolation nodes. Such operation is called the

interpolation of function f(x). Wherein is considered interpolation in the

narrow sense, when xe([x,,x ] i.e. values of x are intermediate between x,

and x_, and extrapolating, when xe[x,,x_]. Further, the term interpolation we

will use for the first and second operation.
The standard interpolation by Lagrange
For any given interpolation nodes often use so-called Lagrange
interpolation formula.

Let in the interval [a,b] are given n+1 different values of argument:

Xy Xy X550, X, @nd known for the function y = f(x) corresponding values:

n

F(%)=Ye F(X)=Y0s (X)) =,
We must build a polynomial L (x) of degree not higher n, that has in given
nodes Xx,,X,,..., X, the same values as function f(x), i.e. such as
L(x)=y, (1=012,..,n)
At first let's solve the partial task: to build a polynom p,(x) such as
p.(X)=0mpu j=iip(x)=1.

In short, these conditions can be written as follows:
1, if j=i
P (Xi) = 5ij - {

0, if j=i (8.3)
where §; - Kronecker symbol.
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v

Puc. 8.1. Interpolation polynom of Lagrange

As the sought-for polynom becomes zero at n  points
Xos X seeey Xi 4y Xip 000y X, 1t 00OKS as following:

P (X) = C, (X = X ) (X = X )-e (X=X, )(X =X, 1) (X = X,,), (8.4)
where C, - constant coefficient. Putting x=xin the formula (8.4) and
considering that p,(x,) =1, we get:

C, (% = %)(X = X)X, = X )% — X, 1) (X — X, ) =1
From here:

_ 1

(% = %) (6 = Xp). (X = X)) (X% = Xi0) (X = X,)

Substituting this value in the formula (8.4), we have:

p; (X) — (X — Xo)(x - Xl)"'(X - XH)(X — Xi+1)"'(X — Xn)

(X = X ) (X = X)) oa(% = X ) (X = Xy )o (X — X)) ' (8.5)

Now let's solve the general problem: to find a polynomial L (x) that
satisfies the conditions specified above: L (x,)=,.

This polynom is as follows:

L, ()= .03y, (8.6)
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In fact, the first, obviously, the degree of the polynom L_(x) is not higher

than N, and secondly, on condition (8.3) we have:

Ln(x,-)=§pi (X)Y, = p,(X,)y, = Y, (j=01...n).

The vector interpolation by Lagrange

Let in the interval [a, b] are given point t,_ (interpolation nodes) and the
vectors v, ={x,,y,} as the values of some vector-function f(t) at these
points, i.e.

ft)=v, =,y  k=01...,n (8.7)
We must find a vector-function r(t)={x(t),y(t)}, telab], graph of which
contains points M(t,)=v, ={x,,y,}.

In case of difference of nodes (t, #t, mpm j=k ,j,keO,n), the

interpolation problem (4.9) always has a unigue solution:

rm:HM:gmﬁ (8.8)
in the class P, of polynoms of degree n of one variable with vector coefficients
p.. Finding of the polynomial P, (x) =Zno“ p,t° is reduced to solving of

compatible systems of linear equations:

Pn(tk)zz.;pstj =v, ={X., Y, } k=012,..,n (8.9)
relatively to the vector-coefficients {p,, p,,..--.-, P, }-

But there's another way to solve this problem - you need to use the

Lagrange formula for vector interpolation problem:

am:Lm:§y¢40:§@@xkga) (8.10)
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where L_(t) — elementary Lagrange polynomials defined by the formulas:

L(t)= (t-t)... -t ) -t,)...-t)  s=on. (8.11)
(ts _to) """ (ts _ts—l)(ts _ts+1) """ (ts _tn)

Software that implements the described algorithm has been developed . The

text of the main program procedures is given in the appendix 12.

9. Bezier curves on the plane and in space
Bernstein polynomials

Let’s we have function f(x)eC([0,1]). Bernstein polynomial b, (f;x) - is

the polynom
b, (:x):= z 0, (X)f [%J _ z f(%)c:‘xm(l— O xelod] (9.1)

At N —oo the Bernstein polynomial b, (f;x) converges uniformly on

the interval [03] to the function f(x):

lim[lo, (f;x)— f(x)| = (9.2)
Thus we have the estimate
Io, (%) - f( X)||<a)( %j (9.3)

Standard operator Bernstein B, : C([0,1]) — C([0,1]) acts by the formula:

Bn(f)(x)::bn(f;x):mzn:_opn’m(x)( j zf( jcmxml O (9.4)

Function y=¢(x)=a(l-x)+bx reflects the interval [01] to the interval [a,b], and

function X=W(y)=ﬁ performs inverse transformation the interval [a,b] to the

interval [01]. These functions generate mutually inverse reflections

¢":Clab) >c(o1) i v :c(o1)—c(ab)
by formulas:

(0" 1)) = Flpl)= fa+(b-a), ,
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" Xy)= f ()= f[y—‘a‘j, yelab].

b-a
Bezier curves on the plane and its properties
Let's define basic Bernstein polynomials

k k(l t)n—k _

Pk (t)=Cht 1-t"%, tefod] k=0..n

( k)'

Bezier curve is defined by vertices Py (k = 0,1,...,n) of basic polygon,
which uniquely identifies the position of the curve in the plane or in space. To
construct a Bezier curve we using Bernstein polynomials and the vertices

Pr(Xk,Yx), k=0,1,...,n, thatis, Bezier curve looks like:
P(t) = z P (P = z ckik@-t)"*p , tefog] (9.5)

where pn(t) - x-th function of Bernstein basis of order n, its maximum is
reached at t=k/n.

Or in the the components:

x(t)= 3 p, () %, = z ckik(— )"«
k=0 "Mk Tk ‘K )n—k . tefo1]  (9.6)

n
V() = 2 Pk (®) vy = Z Cpt (@-1t)" "y,

It is easy to see that each of these components can be count separately as
Bernstein polynomial for corresponding coordinate functions of the parameter t.
For Bezier curve we have the following properties:

1. P(0)=P, (The point P, is the starting point of Bezier curve).
2. P(1)="P, (The point P, is the end point of Bezier curve).
3. P(0)=n[p,—P,] (vector P,—P, determines the direction of the tangent to the

Bezier curve at the start point of the curve).

4. P')=n[p,-P,,] (vector P,—P,_, determines the direction of the tangent to
the Bezier curve at the end point of the curve).

5. P"(0)=n(n-1)[P, — 2P, +P,|

6. P"(1)=n(n-1)[P, 2P, +P ]
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If we conjugate two segment Bezier curve with the basic polygons

P,,P,,..P, and Q,,Q,,..Q,, then the condition of matching of last point of

the 1-st segment and the first point of 2-nd segment (condition coincidence of
segments) takes the form:
P =Q,. (9.7)
Conditions preservation slope tangents at the point of connection of segments
has the form:
P, =2Q; < n[P, —P,,]=Am[Q, - Q, ] (9.8)
If you need to not change the length of the tangent, we get a condition of
tangential connection:
P, =Q < n[P, P, ]=m[Q - Q] (9.9)
Similarly, there is a condition of conjugate of derivates of 2-nd order:
P'=Q! <n(n-1[P_,—2P, , +P |]=mm-1)Q, -2Q,+Q,]  (9.10)
Example. Let P, = 1,1}, P, ={2,3}, P, = {4,3}, P, = {31}.
Then
n=3,by,(t) =C,t°(1-1)° = (1-1)°,b,, (t) = C,'t" (1-1)* = 3t(L-1)?,
by, (t) = C2t*(L-1)" = 3t*(L—t),b,, (1) =C,’t°A-1)° =t°,
P(t) = b, ,P, +b;,P, +b;,P, +b, P, = -0 L3 +3t(1-1t)*{2,3}+ 3> (1 -t){4,3} +t* {31} =

={x(®). y(®)}
Or by coordinates:

X(t) =—4t° +3t? + 3t +1=(t+1)° —5t°
y(t) =—6t° +6t+1=5/2—6(t-1/2)* .

Features approximation using Bezier curves
1. Degree (order) of curve is by one less than the number of vertices of the
base polygon. So, the only way to reduce the degree of curve - is to decrease of
the number of vertices of the base polygon.
2. All the functions b, , (t) are not equal to zero in the interval [0,1], so

changing one vertex of base polygon changes the entire curve.
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10. Linear and homogeneous coordinates on the plane
Basic concepts and definitions

Three points {A,,A,A,} on aplane ~ are called points of general

location, if there is no line, which includes all these points. These points do not
coincide with each other and the line, passing through two of these points,
contains no third point.

Rapper A on the plane ~ we will call the ordered three points

A={A,,A, A,} of general location on this plane ~.
Linear coordinates on the plane =, which are defined by rapper
A = {A,,A,A,} or the system of linear coordinates, we will call a couple of
reflections: Crd, :7 —R? (two-dimensional coordinates of the point) and
Pnt, :R?> — 7z (point with two-dimensional coordinates)

that satisfy the following conditions:

1) Reflections Crd, and Pnt, are reciprocal

{ Pnta (Crdp (X)) =XV Xer, Pnty o Crda =1,
Crd, (Pnta (X)) =xV xeR2, abo L CrdaePnty =1 ,.

2) Normalization performed

{ Crda (Ay)) =1{0;0}, Crda (A)) =110}, Crda (Ay)) ={0:1},
Pta ({00f) =Ay, Pnta({LOP)=A, Pnta{0iL}=A,.

Let on plane ~ are two systems of linear coordinates (SLC). The first (x-
coordinates) with rapper A={A_,A,,A,}, and the second (y-coordinates) — with
rapper B ={B,,B,,B,}. Let the point Xe has coordinates x ={x,x,} in the first
SLCand coordinates y={y,y,} in the second SLC. Then the reflection
f:R®*>R* and q:R*—>R?, which are defined by formulas
y = f(x):=Crd,(Pnt,(x)), x=q(y):=Crd,(Pnt,(y)) vV x,yeR* define replacement of

X-coordinates to y-coordinates and vice versa.
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Structure of the totality of systems of linear coordinates
on the plane
Let on plane 7~ there is a systems of linear coordinates with rapper 4 of

three points of general location i ¢:R?> - R?* — affine species of the type
o(X) = Xa+ B(x,b e R*,a e M,,detar = 0). Then the reflection w(y)=ya™-pBa™ IS
inverse to reflection ¢ and exists the rapper C={C,,C,,C,}, for which the
following conditions satisfy:  woC r,d=C r.d Pntep=P n1 Wherein
C, = Pnt, (B),C, = Pnt, ({L0}r + B3) .

Consequently, transferring the coordinates of points at a fixed SLC using
arbitrary reflection ¢:R> 5 R*> (p(X)=xa+p, x,beR*,a e M,,deta #0),
for which the transfer to fixed coordinates SLC via display the coordinates of an
arbitrary point in the SLC.

Homogeneous coordinates on the plane

Homogeneous coordinates on the plane ~- is a set of ordered triples of
numbers {x,x,,x;}  (xZ+x;+x5=0), for which the following equivalence is
introduced. The triple {x,,X,, %} IS equivalent to the triple
i Yor Vo (%0 X0, X =Y, ¥ Vs ), iIf exists such  t>0, for which
y, =tx (k=12.3).

Usually coordinates {x;,X,} define a single class [x,x,.1]. Reverse
requires consideration of two cases.

Class [x,,x,,x;] at x,=0, i.e. consider triples {x,x,,x,} (X, #0).
Let X, =X /X%, X5 =X,/ X,.
At x,>0 we have {x,x,,x, ~{X;,x%,. ez (points of front). So, front =, =» —
Is the set of classes [x,,x,.1].
At x,<0 we have {x,x,,x}~={-x,%,} (points of rear front). So, rear front
x —Isthe set of classes [x,x,,~1].

1) Class [x,,x,,0]1eP?, i.e.eachtriple {x,x,,0} (X2 + X5 +x; #0),
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defines on the plane the only point at infinity, which corresponds to a ray that

starts at the origin O. Always for each class [x,x,0] we can consider normalized
triple {x,x,,0} (xZ +x2 =1). Wherein vector x={x,x,}eS"* defines the ray
p, ={(y,,¥,,.0)eR® |y, =tx,,y, =txX,,t >0}, x € S™.

So, due to the determination of uniformity at R*\{0} for classes xx,x, we
can assume that the third coordinate is £1(x, #0) or 0 (x,=0), i.e. we have
following cases:

1. At x, =1 we have the front points 7,

2. At x, =-1 we have the points of rare front = _,

3. At x, =0 we have points at infinity of plane 7 or the skyline z,.
Mathematical coordinates and the coordinates of the device
Consider on the plane = the Cartesian system of linear coordinates ({x, y}-

coordinates) centered at point O(0,0).
Definition. Mathematical window — is a rectangle ABCD on the plane,
(bypass circuit - counterclockwise) whose sides parallel to the axes OX and OY.

The lenthes of the rectangle sides determine the size r, = AB|§|CD| and
r, =l BC ||=| AD| of mathematical window along axes, respectively, OX and

oY.

Let S(s,,s,) — the center of the screen. Then for the vertices of the

rectangle of window we have the coordinates

Il . r .

{sx—r—x,sy+—y (point A), {sx+r—x,sy+—y} (point B),

2 2 2 2
{s NI —r—y}(point C) {s hes —r—y} (point D)

x T oY, ' x 9’ 9 )

So, knowing the coordinates of the center of the screen S and the size of the
rectangle, we completely determine the mathematical window.

Definition. On its part, with mathematical Cartesian SLC is related so-

called coordinate system of the device {&n} - a physical screen coordinate
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system which addresses the physical point (pixel) of screen. The origin of
coordinate of device system coincides with the top left corner of the

mathematical window (point D), direction of axes X and & coincide (direction -
right ) and axes Y and » - is opposite (Y- upwards, » - downwards). Screen size

along the axes ¢ and » is measured in pixels — m, along the axis ¢ and m,

along the axis .

Definition. Window of device or display area - is also a rectangle ABCD,
whose sides are parallel to the bounds of screen, and the points A, B, C, D
coincide with the boundary corner points of the screen. Sizes of sides of the
rectangle are specified in pixels and determine the size of the screen:
= CD||

m, =|| AB || (width sweep) and m, = BC|,;.Al AD|,. (height

pixels pixels

sweep). But we must note, that when programming the coordinates of points are
measured from zero (O - is the first pixel, 1 - second pixel, etc.) then the last m-
th pixel will be addressed at the number m-1. Therefore, coordinates of the

vertices of the display area are: {0,m, -1} (point 4), m ,—1m -1} (point B),

{m -10} (point C), i {0,0} (point D).
Formula changes {x, y} - coordinates to {&,7n} - coordinates should look

like {é::amﬂy e Therefore, after the substitution of mathematical
n=p++ao.

coordinates and corresponding device coordinates for points A, B, C (point D is

uniquely determined by points A, B, C, and so it can be neglected), obtain a

system of six linear equations with six unknowns (a,p,¢,7,8,@). By solving

these equations, we obtain matching math coordinates and the coordinates of the

device while centering on the center S(s,,s,) of the window:

1 e 15

fzkx(x—sx+§rx), . X=S§, 2rXJrkX,
1

1 1 n

77=ky(Sy+§l’y—y). y:Sy‘f‘Ery—k—.

y
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m, -1 m, -1
where k =——, k, =—
r, r,

. But preserving the aspect ratio while displaying

on the screen, we must assume that the relation r,/r,=m, /m, are satisfied,

my—l m
r m

X X y

m
TOOTO T, =T, my and we must calculate k, by the formula: k, =

11. Basic conversion in the plane. The main symbol of affine

transformations
The concept of transformation on the plane
Let on the plane = we have some system of linear coordinates. For any
linear transformation A its mathematical expression in ordinary coordinates

Q. Oy

has the form (A):x :Xa+ﬂ,a:(
Oy Ay

jeMz,x'x,ﬂeRZ, I.e. the coordinate

.. . . X, = ay, X, +ayuX, + B,
expression in ordinary coordinates has the form (A):{ Loomn A P
X, =8,X +8,X, + 5,

Substitution  {x;,X,,%,, %, }— /X5, %, /X3, %, /X3, %, /%, }, on condition, that
X, = X;, gives the coordinate expression of transformation in homogeneous

coordinates:

Xi =X + 0y X, + BiXs,
(A): Xy = QppXy + Ay Xy + By Xs,
X, = X
or we get the matrix expression of transformation in homogeneous coordinates:

o, o, O
[x]z[x]-[A]<:>[xl,xz,xa]:[xl,xz,xa]- a,, o, O

A B 1

Let's consider transformation A, linear on plane ~. The main and the full

symbols of transformation A we will call the matrices:
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a, a, 0

a a
on(A) = {an a12 :|1 U(A) =lay ayp 0

(here symbol "'m" means main). We shall also denote the symbols &_(A)
and o(A) as [A], i [A].

The fixed point of transformation P:z — 7 is the point X ez, which
remains in place under the action of transformation P, i.e. it is a solution of
equation X =P(X).

Basic transformation on the plane
1. Parallel transfer

Parallel transfer T, : # — ~ by vector a on the plane ~ can be defined in
different ways.

Geometric definition. 1) At a =0 ={0,0} (zero vector) let X =T,(X)=X,
i.e. T,=1 (identity transformation on plane r); 2) At a=0={0,0} (nonzero
vector) for any point X e~ from point X postpone segment XX, which has a
length of vector . Wherein the direction of vector from point X to point X
coincides with the direction of vector a. Point X " is required (7,(x)=x").

Vector definition. For any point x e~ let's define the point X e~ as the

only solution of the vector equation relative X (vector expression of parallel
transfer): XX =a,X ez,a|z. Then we put: 7,(X):=X".

Affine definition. If O - some fixed point in space, then the vector
expression can be written as affine expression of parallel transfer:
(7,): X =X+a, VXerx. So, with this formula we find the coordinates of
vector X and then the point X" and put: T,(X) :=X .

Coordinate definition. Let on the plane = we have system of linear

coordinates. If as the origin of the coordinate system we choose O=P,, then

from affine definition we receive the coordinate definition of parallel transfer:
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@ ):{xl' =X, +a,

X, =X, +a,
where {a,,a,} and {x,,x,} - the coordinates of vector ¢ and point X in our
system of linear coordinates. l.e., with the last expression we find the
coordinates {x1,x} of point X and put: T,(X)=X".
The set of transformations Shifts(z):= {ra T ﬁ‘auﬁ} forms a commutative

group of parallel transfers relative composition -. Wherein: 1) There is a law of
multiplication T, oT, =Ta+b,a,b”7r; 2) The unit of group is the element T, =1; 3)
Inverse to element T, is the element T__ .
2. Rotation

Rotation R, : 7 — = on the plane ~ around the point A<z by the angle
a R (radian).

Geometric definition 1) At X=A (the center of rotation) we put:
X =R@(X)=x (i.e. AeFix(R{));2) At X = A for any point X ez from
the point A postpone segment AX', which has a length of the segment

AX(”AX'” =|AX| ) and the angle between the segments AX i AX' (taking into

account the direction of rotation) is equal a(<(AX,AX")=«). The point X' is
required. So, we put: R{(X):= X"
3. Axial homotetia

The homotetia H! : 7 — z(k = 0) on the plane ~ relative to the line | c
can be defined in different ways.

Geometric definition. 1) At X el (axis of symmetry) let’s put:
HY(X)=X; 2) At X ¢l we draw the line through the point X . This line
I, e, which is perpendicular to the line I (X el I, L1). Let A=I,xI-
point of intersection of lines Lil. On the line I, from point A" (at k<0 - in the

opposite direction from point X; at k>0 - on the same side as the point X ) we
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postpone segment A'X', which length is equal to the length of the segment A' X,
which multiplied by number [k |> ofja'x{ = |k |-[A'X]]).

Vector definition. For any point X ez let’s define the point Ael, for
which the vector AX has the smallest length: |A X|=min, |AX||
(corresponding segment is perpendicular to the line 1). It is clear that point A’
depends on the line I and the point X. Let's define the point X ez as the only
solution of the vector equation relative x: AX'=kA'XVA X ez (vector
expression of the axial homotetia). Thus, first of all we find the point A" (as a
basis of the perpendicular XA on the line 1), from vector expression of the
axial homotetia, we find the vector A'X' and then — the point X'. Then we put:
H®(X):= X'. Wherein, if X ez, then X'e .

Affine definition. Let O - any point in space and the point A' is found as
in vector expression of the axial homotetia. Then, at first, vector expression of

the axial homotetia can be written as an affine expression of the axial
homotecia: (H®): X' =kX —(1—k)A' VX e. So, from the affine expression of
the axial homotecia we find the vector X', and then the point X'=0+ X" and
put: H¥(X):= X'. Wherein, if A X e, then X'e .

Coordinate definition. Let on the plane = we have system of linear
coordinates (x - coordinates). If the point O=A,, then from the affine
expression of the axial homotetia we can obtain the coordinate expression H".
But here we have some uncertainty: we don't know the dependence of the point
A'(xl,x'z) upon the coordinates of point X{x,x,}. But here we have some
uncertainty: we don’t know the dependence on the point A(x,x,) upon the
coordinates of point X{x,x,} and the coefficients of the equality of line I. From
analytic geometry we know, that the point A' satisfies the condition: if I, - the

line passing through the point X and is perpendicular to the line I, the point A’

belongs to the line I. This allows you to find the coordinates of the point A" over
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the coordinates {x,x,} of X and normalized equation coefficients{c,s, p} of line
l:

(1):cx, +sx,+p=0 C:=cosa,s =sina, p e R (11.1)
(here n={c,s}={cosa,sina}- orthogonal vector normal to the line | and a - the
angle of the vector normal to the axis 0X,). Really, let {a/,a;} — unknown
coordinates of the point A’. Then the condition A'el gives the first equation to
find the coordinates of the point A’:

ca, +sa, + p=0 (11.2)
From analytic geometry we know, that the unit vector n:={c,s} is perpendicular

to the line |, which is defined by the equation (11.1). Therefore parametric

equation of the line |y ez, which is perpendicular to the axis of homotecia |

) ) §1=C-I+Xl,
and for which X el_, looks like:
X & =S-t+X,.
a, =C-T+X,,
Letat t=7: ,
a, =S-7+X,.

Substituting these values in (11.2), we obtain:
cc-t+x)+s(s-7+%X,)+p=0=>7=—(C-X, +S-X, + p),
o)

a =—C(C-X, +S-X, + p)+ X =(1—C?)x, —SCX, —Cp
a, =—S(C- X, +5-X, + P)+ X, = —5CX, +(L—5%)X, —sp

Substituting this coordinates to the affine expression of the axial homotetia, we
get the coordinate expression of the axis homotecia for normalized line

equation:

(H.<k>):{X£ =[ke® +5°Jx, + (k ~Dsex, +(k—Tep,

(11.3)
X} = (k —1)scx, +[c* +ks®]x, + (k —1)sp.

Thus, we find with the formulas (9) the coordinates (x;,x;) of the point X" and

put: H®(X):=X". Whereinif X e, then X'er.
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4. Axial symmetry

Symmetry S, : 7 — 7 relatively line 1 =z can also be defined in different
ways.

Geometric definition. 1) At X el (the axis of symmetry) we put
Si (A)=A. 2) At Xl we hold a straight line Iy ez through the point A, and

this line is perpendicular to the line 1 (X eEI;( c7z,|;( L1). Let A'=I, xI - the

point of intersection of straight lines 1. i I. On the line Iy froma point A’ in the
opposite direction from the point X the segment A'’X’ is postponed. Its lenth is
equal to the lenth of segment A'X (| A'X'|=| AX |)). The obtained point X' is
required (i.e., we put S,(X) = X").

Coordinate expression of the axis homotetia for the normalized line equation:

(ka))i{Xi =[ke? +5°]x, + (k=Dsox, + (k ~1)cp,

(11.4)
X, = (k —1)scx, +[c* +ks®]x, + (k —1)sp.

Fixed points of transformations in the plane
A fixed point of transformation is determined using the coordinate
expression [x']=[x]JA] in homogenious coordinates. It satisfies the condition
x'=Ax (1>0). So, to find fixed points of the transformation A, we must find
positive eigenvalues of the full character [A]. The corresponding eigenvectors
(i.e., non-zero solutions of equations x[A]=.x) there are the homogeneous

coordinates of fixed points.
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12. The compositions of affine transformations

on the plane
Transformations on the plane

By this time, the points on the plane = were considered as fixed: for each
fixed point X in each system of linear coordinates from the set Crd(z) were
considered different coordinates of this fixed point and we studied only
changesof X - coordinates on y - coordinates:
y=Xxa+pB (aeM,, deta=#0, feR?) or x=Crd,(X)—>Crd,(X), where X -
fixed point and A, A - two alterable rappers. But you can do the conversely:
fix (once for all) some system of linear coordinates with Crd(z) and consider
the affine transformation of the plane ~.

Let on the plane ~ we have system of linear coordinates (x - coordinates).
Linear transformation P:z — z is the transformation, which has the coordinate
expression of the type: x =xa + 3, where X, X - vector-lines of coordinates of
corresponding points, «eM,,8<R?. If we add here the condition deta =0,
we get the definition of affine transformation. Coordinate expression of
transformation P can be written in such matrix way: (P):X =xa+ 8 (for
ordinary coordinates).

There is an inclusion Aff(z) cLin(z). The converse is not true. For
example, constructing the projection in fixed point B(b) with coordinate
expression (P):x =b is the linear transformation but it is not affine. But if the

linear transformation has an inverse one, then it is affine transformation
The concept of composition of transformations
on the plane

Composition of transformations AB:z—~z - is the transformation

C:z—n, Wwhich is defined by formula: C(X):=A(B(X)), VXex. The
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composition of transformations A and B ( order of transformations is essential)
we will denote as Bo A.
Note. The general line | equation is not normalized, i.e.

I,x, +1,x, +1, =0, 17 +12 %0 (12.1)
When you divide (11) on L=./I>+I? obtain the normalized equation. The last

action is equivalent to substitution {c,s, p}a{l—i,—i,l—i} in formulas (9).

Therefore, in the case of general line equation (11) we obtain the coordinate

expression of the axis homotetia for general line equation:

!

X, =

K7 =D (k=D

- 1 2
(H): 17 +17 17 +12 17 +12 (12.2)
k=L, IS (k=D
1I2+12 70 12412 72 12412
Note. The general line | equation is not normalized, i.e.
I, +1,%, +1,=0, 17 +12 %0 (12.3)

When you divide (11) on L=./I>+1? obtain the normalized equation. The last

action is equivalent to substitution {c,s,p}a{l—i,l—i,l—i} in  formulas:

ﬁ=szzl wgn?gz w53€3

(H®): - +1, -+, I +15 (12.4)
;o (k=DL1, 1214 kIZ (k =D)L, 1,
P21 T 12412 T 12412

Therefore, in the case of general line equation (11) we obtain the coordinate

expression of the axis homotetia for general line equation:
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13. Curves of the second order: representation by matrix and
invariants. Reduction of the second-order curve to the canonical

form. Classification of second-order curves
Curves of the second order
General curve of the second order on the plane = with system of normal

(x,y) -coordinates is geometric set of points of the plane which coordinates
satisfy the equation:
L(X, y) = AX2 + 2Bxy + Cy2 + 2DX + 2Ey + F=0 (A2 + B2 + C2 0)
(13.1)
Note. Conditions A2 +B2+C2 =0 is equivalent to being in (13.1)
members of second order relative variables X, Y.

Note. The curve of the second order often defined as the algebraic curve
that in some affine coordinate system has the form (13.1). This definition, like
the previous one, is correct so that the change affine coordinate system to

another affine coordinate system by the formulas:

{X':an”alz“bl a1 G2

. o o g detAz0 (132)
y=a21x+a22y+ ) 21 922

the degree and type of equation (13.1) does not change.

The curves of the second order are also called conic cross-sections
because historically they were concidered as sections of conical surfaces, in fact,
direct circular cone. For example,

1. Circle (or point - degenerate circle) is a cross-section of direct circular
cone by plane that is perpendicular to the axis of the cone.

2. Ellipse (or point - degenerate ellipse) is a cross-section of direct circular
cone by plane, sloped to the axis of the cone on angle over than angle between
the cone axis and generatrix of cone but less than 90 degrees.
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3. Parabola is a cross-section of direct circular cone by plane, which is
parallel to some generatrix of the cone, thus generatrix not belong to this plane
(if the generatrix of cone belongs to the plane, we have the case of two lines
that degenerate in a one line). Thus the angle between plane and the axis of the
cone is equal to the angle between the axis of the cone and its generatrix.

4. Hyperbole (or two lines, intersecting) is a cross-section of direct circular
cone by plane, sloped to the axis of the cone on angle less than angle between
the cone axis and generatrix of cone.

Symmetric matrix

A B D
L:H|ij:: B CE (13.3)
D E F

completely determines the curve (13.1) and corresponds homogeneous quadratic

form of the second order relative variables (X, Y,2).

L(X,Y,z) = Ax? +2Bxy + Cy2 + 2Dxz + 2Eyz + Fz2 =

A B D
=[x y z2}{B C E[x y 2 =[x y zZlLx y 2
D E F

(13.4)
But the latter form defines a conical surface L(x,y,z)=0 in space II with
coordinates {x,y, z}. So the curve (I) can be regarded as (spatial) projection on a
plane z=0 parallel to the axis OZ (spatial) curve C, which is obtained at the
intersection of the conical surface L(x,y,z)=0 with plane z=1.

The equation

L(x,y,z):Ax2+ZBxy+Cy2+2sz+2Eyz+F22:[x y zlLx y z]' =0
(13.5)

can be seen as a second-order curve equation in homogeneous coordinates

[x y z]. Therefore, the matrix a will be called the matrix of the quadratic form

(13.1) or matrix of curve (I) or matrix of homogeneous curve.
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Invariants of curve of the second order
The invariant of second order curve (relative to change of normal
coordinates) is a function f(A B,C,D,E,F) of the coefficients A B,C,D,E,F of
equation (1) of this curve, which does not depend upon change of the normal
coordinates on the plane .

For the equation (13.1) or equation (13.5) (or matrix o) let's denote:

- A B
S=A+C,S=A+C+F=S+F,6=Ar = , (13.6)
B C
A B D
A=lB C B} Keagta.= T4t P (13.7)
- ’ A CE Fl D Ff '
D E F
Ki=A,+An+A _|A B+C E+A D—5+K (13.8)
A C F B ClE F Fl ' '

Here is used the following notation: Ay - Is (nonalgebraic) minor of element U

of matrix a, it is the determinant that we get from the determinant of matrix a,

expunging the row and column containing the element U.

The values S:=A+C and &= 5

A B :
‘ ‘ does not depend on changes in normal

coordinates in equation (13.1). Specifically, this values are invariant relatively

to change of normal coordinates .

A B D
A B
The values S = A+C, 5:=‘B C‘=AC—B2 and A=B C E| are called
C E F

respectively the invariants of the equation (13.1) of first, second and third order.

C E
E F

A Dl — . L :
The value K :=‘ HD F‘: K ¢ is called semiinvariant of equation (13.1).
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Reducing of curve equation to the canonical form

The main problems of the theory of second-order curves are,

First, the classification of these curves (in terms of matrix L) and
secondly, the adductionof the equation of any such curve to the canonical form,
more precisely, obtaining change of coordinates at which the curve of the
second order equation takes the simplest (canonical) form.

But our main goal - is to use second-order curves in the practical output to
the screen, and we had little formal grading curves of the second order, that is,
the knowledge that there affine coordinate system, which has, for example, an
ellipse. We additionally need to find how to calculate the matrix of change of
coordinates that performs construction curve equation to canonical form to be
able to carry out the withdrawal of the curve in the terminal window computer.

Therefore, we will implement the dual approach using as a representation
of the curve in the form of (13.1) and the presentation of the curve (13.4) using
affine change of coordinates (ie homogeneous coordinates transformation
matrix). In this case, we will need the following statement.

Statement. Let{x,y,z} - homogeneous affine coordinate system on the
plane and {x',y,z | - other homogeneous affine coordinate system on the same
plane. Let M - corresponding matrix change of homogeneous coordinates, i.e.,

[x'y'z]=[xyz]- M or [xyz]=[x'y'z] M (13.9)

Then the curve equation (5) transformes into the equation

L'(x'y'z')= AX?+2B'x' y'+C'y?+2D' X' 2+2E'y' 2+F'z? = [x'y'Z]- C - [x' y' 2] =0,

(13.10)
Where
L=M*LM ) =m*L(MT)" (13.11)
I.e. the matrix of curve at changing of the affine coordinates (13.9) is calculated
using the formula (13.11).
1.  The matrix of parallel transfer of coordinates
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My, = ({m,n} e R?) (13.12)

3 O -
R O O

0
1
n

with change of coordinates {>_< —X+Mmy =Y+ n} (npu{m,n} = {0,0}) get
the change {>_< =Xy = y} that actually is redefinition of coordinates.
2. The matrix of rotation around the origin

c -s 0
M,=|s ¢ O (13.13)
0 0 1
by the angle « =arctg§(c,320icz +s®=1) with change of coordinates
{>_< — CX —SY; Y = SX + cy}. This matrix is always orthogonal, that means
that its transposed coincides with the inverse: MT =M ™
Parallel shift of affine coordinate system
The formulas for change of coordinates, which we call parallel shift of affine
coordinates on the plane ~, defined as (here {x,y}) ({x,y} - coordinates of the
point X in the original affine coordinate system; {)?,37} - coordinates of the

same point X in the new affine coordinate system):

_ 1 00
direct change: {f=X+m ; M, =0 1 0 (13.14)
y=y+n sh
m n 1
_ 1 0 O
inverse change: Xx=x+m. M ﬁ =0 1 0 (13.15)
y=y+n N T

At the change of the coordinates (13.14), curve equation (1) takes the form:
L(X,V) = K>—<2+2§x_y+c_:72 +2DX+2Ey+F =0, (KZ +B2,c? = 0),
(13.16)

where
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(A=A,B=B,C=C,
D:—Am—Bn+D=;L'X (-=m,—n),

E=— Bn—Cn+E:;LIy(—m,—n), (13.17)

2

 F=Am~+2 Bmn+Cn?—2Dm—2 En+F=L(-m;-n).

The following statement highlights the value & = AF in the reducing of a
general second-order curve equation to canonical form.

Statement. 1. At s = AF #0 (AC = Bz) there is always a change of
coordinates (13.15) which reduces (13.1) to the form in which there are no first
degrees variables X and y (i.e. D = E = 0). Wherein:

ms=— n=—— (13.18)

The point M (X,, Y, ) with coordinates

{x0:¥0 )= f=m,—n} = {25,25} (13.19)

is the center of symmetry of the curve (in homogeneous coordinates

|xo : Yo 1= lap —Ap TAE |). Wherein the curve equation takes the form:

2 A

2
AX +2Bxy+Cy + 5 =0 (13.20)

2
2. At 5= AF =0 (i.e. AC =B ) change of coordinates (13.15) which

reduces (13.1) to the form in which there are no first degrees variables X and

y, exists if and only if the conditions:

[Ap =0, A_=0, A :O]<:>[CD:BE, AE=BD, AC:BZ} (13.21)

E F

This is the condition of proportionality of the first two rows of matrix L.

Wherein is necessarily: A=0.
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Rotation of affine coordinate system

Let's introduce rotation around the origin {x, y} of coordinates, i.e. around
the point {x, y} = {0,0}, as the change of {x,y}- coordinates on {x, y}- coordinates
by the formulas ({x,y} — are the coordinates of point X before rotation, {x,y} -

coordinates of point X , which corresponds point X after rotation):

_ X=cx+sy, c2+s?=1
direct change: _ (13.22)
y=-sx+c¢y, ¢>0,s>0

X=cx—sy, c2+s2=1

inverse change: { (13.23)

y=s§+cy_/, c>0,s>0

Of course, the parameters ¢ and s - are respectively cos and sin of some angle of

rotation ¢e (0,%). In this case, this rotation translates perpendicular axis x and

y to the perpendicular axis x and y represents the rotation by angle (radian)
toward the opposite direction clockwise, i.e. (13.22) and (13.23) can be written

as.

X =COSQ X +Sing Y, (13,20

direct change: {_ )
y=-SinpXx+CcosQy

. X =C0Sp X —Sing Yy,
inverse change: - .- - (13.25)
y=SIn@X+CoSpy
At B =0 change of coordinates, at which the product of variables in the
curve equation (13.1) disappears is determined by changing coordinates
(13.22), where:

c= \/E(H —(A—(j)asignBj, s= J%(l_—(A—Cj)asignBJ : (13.26)
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Here d =(A-C)* +4B? =S?-45. If we put c=cosg, b=sing (i.e. choose the
change of coordinates in the form (13.24) ), then the angle ¢ can be obtained by
2|B|
(A—C)signB++/d

formula: @ =arctg (13.27)

or by formula (at A=C):

goziarctg 2B A=C.

2 A-C

Reduction of curve equation to the canonical form
Reduction of curve equation to the canonical form will be carried out in
several steps.
Step 1. As has been proved, exists a change of homogeneous coordinates,

which combines the center of coordinates with the center of the curve

{1, V=11, M, with matrix

0 0 A 0 0

M, = 0 A1 0Or=¢ 0 A, O ¢, (13.28)
_~b ZE 1 -A, A A
5 5 D E F

for which the curve equation in homogeneous coordinates takes the form:
AE? +2BE R +Cp” +%§'2 _o, (13.29)
or in ordinary coordinates:
Ax? +2Bx'y +Cy? +§=0. (13.30)

Step 2. Construct the change of homogeneous coordinate

{/:,77,5}: {5',77',( } M., i.e. matrix M, by the following rule:
1 00

1.At B=oweput M, =70 1 0p,
0 01

2. At B=0 we put
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1 (A-C)signB |1, _(A-C)signB
Jz[“ =) Jz[l £ o

—J |1, (A-C)signB 1(,  (A-C)signB
M, = \/2(1 5 j \/Z(H—\/E j 0+, (13.31)
0 0 1

where d =(A-B)*+B*=S5%-45.
Thus, at the transformation of homogeneous coordinates
{0, Y={&,n, 3 M with matrix M =M, -M, it will be always B =0 in the
curve equation, i.e. we obtain the equation of the curve:
AX +Cy +F =0, (13.32)
or in homogeneous coordinates:
A +Ch’ +%§2 _0. (13.33)

In the case when 5§=0, B =0 the change of coordinates (rotation around
the origin of coordinates with parameters ¢ and s, which are obtained by
formulas (13.26), the equation (13.1) changes by formulas (13.32) or (13.33),

where B =0. Wherein, the invariants of the curve are not changed. So, in new

coordinates {x, y} we receive the previous case 6=6 i B=0.

In the case when & =0 always will be S 0. Really, at S =0 we have

AC — B? C=-A . .. .
C >0 , -, . — A=B=C=0,which isimpossible. So, S0 at
A+C=0 -A"-B°=0

&> 0. But then there are also equivalence §>0 <~ AS >0, %:o < AS=0,

§<0 «— AS <0.
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14. Output of second-order curves on display. Method of
cross-section. Iterative algorithms displaying the curves of the

second order
Construction of iterative scheme

Let's consider algorithms display the curves of the second order by the
example of hyperbole. To implement iterative algorithm we will build the
iterative scheme. For this let's parametrize the curve:

X=a-Cose

{y =b-sing
where ¢- IS parameter, angle.

Next we need the following formulas for hyperbolic functions of sum of

arguments:
sh(x + y) = shx-chy + chx - shy,
ch(x + y) = chx-chy + shx- shy.
Let's transform in recurrence relations:
Oy =0 + (K+Dh =@, +kh+h=¢, +h,
U, = tche, , = £ch(p, +h) =+chg, -chh+shg, -shh=chh-u, +shh-u,,
V,,; =1Eshe,,, =1sh(p, +h) =1shg, -chh+che, -shh=shh-u, +chh-v,.

That is, we have the following iterative scheme

hh shh 0
[uo. v 1] = [£1,01] e
{[uk+1ivk+1 ’1] = [Uk » Vi ’1]H h ’ e Sr(])h Ct(])h fl_) . (14-1)

Wherein detH, =ch’*h—sh*h=1;
H, - hyperbolic rotation matrix.

(Note, that similar matrix can be found for an ellipse:

cosh sinh 0
E, =|—sinh cosh 0 (14.2)
0 0o 1

- elliptical rotation matrix.)
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If equation (1) of the curve of second order by change of coordinates
[x, y.1]=[u,v,1]-M reduces to equation in canonical form, then the coordinates
of vertices of the polyline which approximates the curve in {x,y} - coordinates
will be equal [x.,y,.1]=[u..v,1]-M. Hence we obtain the following iterative

scheme for the coordinates of the vertices:

[%o, Yo.1]:=[10,1]- M,
[Xk+1' yk+1’1]:: [uk+1’vk+1’1]' M = [uk'vk '1]' H,-M = [Xk’ Y« ’1]' My,
M, :==M™"-H, -M

Wherein detM, =detM *detH, detM =1, i.e. change of coordinates with matrix
M, preserves the area of figures.

Matrix M, can be calculated prior to the cycle of calculation of sequence
of points {x.,y, }, since it does not depend on k.

In the case of hyperbole that is not degenerate (5<0,A=0) matrix M,

determines the hyperbolic transformation of  plane which is  defined by
hyperbole, and it is the hyperbolic rotation of plane.
Iterative algorithm for displaying the arc
of hyperbole (ellipse)

1) Entrance:
- Taking coefficients A, B, C, D, E, F of curve equation (13.1).
- Finding and invariants 5 and A (see formula (13.6) and (13.7)). Test
conditions §<0, A=0 (non-degenerate hyperbole). If these conditions are not
met, then go to Exit.

Finding the changes of coordinates with matrix M that is not
degenerate, of size 3x3, at which equation (13.1) is reduced to canonical form.
Matrix M can be found as the product of matrix AM; from formula (13.28) and

matrix M, from formula (13.31).
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Obtaining values of the initial ¢, and final ¢, angles of parameter

P (@20 <)
Getting of the number of sides (or vertices) m> 2 of polyline by which
we approximate the desired curve.

Initial installation (before arithmetic cycle):

_Count h=2"% .0,
m

- Count matrix H, by the formula (34) (in the case of an ellipse - corresponding
formula (13.33) ) and then the matrix M, =M *H,M .

- Count the coordinates [x,,Y,.1]=[-che,,—shg, 1]-M of the initial point A, .

2) - The beginning of the arithmetic cycle from n=0 to n=m (from the
beginning of the cycle n:=0, when the current cycle n := n +1). Further test
of conditions N <m, if performed, so - go to step 1, if not - go to Exit. -

Calculation of the coordinates {x..,,V,...1}=1{x.,y,.1}-M, of the current point

An+l'
- Display of the interval [A , A ] in the window.

3) The end of the arithmetic cycle by n (transition at the Beginning of the
arithmetic cycle).
4) Exit.
lterative algorithm for displaying parabola
Let N>0 - natural numbers describing the number of vertices
(approximately K + N ) approximating polyline. Let’s put:
t, =T+k-h,
u, =t2, k=01..N
v, =t,
Transform in recurrence relations:
ty=T+k+D) -h=T+k-h+h=t, +h,

U, =t2, =(t, +2ht, +h*=u,_+2h-u, +h?),
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Vg =ty =t +h=v, +h,
That is, in the homogeneous coordinates we have the desired recurrence
relations:
{[uo,vo,l] =[T%,T1]
U,V 1 =[u,,v,1]- P,
1 00
where P, =|2h 1 0 - MaTpHIld apadoJIIYHOTO OOepTaHHS.
h> h 1
Wherein det P, =1.
We have the following iterative scheme:
{[xo,yo,n:[TZ,T,l]- M,
[Xnts YA = [X00 Yo 11- M,
where M, =M *P.M .
Matrix M, defines the parabolic transformation of the plane. As in previous
cases, this matrix can be calculated before the main calculating cycle.
Thus, we obtain an iterative algorithm for displaying the arc of a parabola
1) Entrance:

- Taking the value p - the parabola parameter (p >0).

Taking the value h>0.

- Taking the values of coordinates X, =T,Y, =T? of the initial (start)

point A,.

- Taking the number m > 2, which is the number of the parties (or vertices)
of polyline by which we approximate the desired curve.

2) Initial installation (before arithmetic cycle):

- Calculation of matrix M, (similar to the case of the ellipse or hyperbola).

3)  The beginning of the arithmetic cycle from n=0 to n=m-1 (When
entering in the cycle n=0. In the cycle n:=n+1). Further test of conditions
N <m, if performed, so - go to step 1, if not - go to Exit.
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- Calculation of the coordinates {x..,,y..,.1}={x.,y..1}-M, of the current

point A ..
- Display of the interval [A , A ,,] in the window
- The end of the arithmetic cycle by n (transition at the Beginning of the
arithmetic cycle).
4) Exit.
Method of cross-sections

Preliminary considerations indicate how to implement output curve of the
second order in the shortest time and in the most rational way. But often there
are cases when the output curve of the second order on the screen (window)
terminal could spend a lot of time, that is, the time performance of output curve
Is not critical. In this case, after finding the type of curve by invariants method,
for displaying an ellipse, parabola or hyperbole can be used the cross-sections
method.

If we know the mathematical boundaries of window (x, - left, x - right,
y,- lower, y - upper) and the window size M, xM, (pixels), the displaying of

curve (1) on the screen can be made by the individual pixels.

l. The case A=0, C=0.

In this case, equation (1) has the general form. So we get the following
algorithm:

1)  Calculatestep Ax = (X, —X,)/ M.

2) The beginning of the first arithmetic cycle from j=0to j=M, -1.

3)  Calculate the value x; =x, +(j—1)Ax.

4)  Consider the equation (1), as equation relatively Y if X=X; (cross-
section parallel to axis Y), i.e. the equation Cy? +2(Bx; + E)y + Ax? +2Dx; +F =0

and find the discriminant D = (Bx; + E)* —C(Ax*) +2Dx; +F).
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5) At D=0 calculate y, and y, by the formulas for the roots of quadratic

equation:

. (B +E)—\/5, . _ (B +E)++/D
C C

and carry out displaying to the screen of pixels with coordinates {X;,Y,} and

X, Y2}

6)  The end of the first arithmetic cycle.

7) Calculate step Ay =(y, -y,)/M,.

8)  The beginning of the second arithmetic cycle from j=1to j=M -1

9) Calculate values y, =y, +(j-1)Ay.

10) Consider the equation (1), as equation relatively X if y=1Y; (cross-
section parallel to axis X), i.e. the equation Ax* +2(By; + D)x+Cy? +2Ey; +F =0
and find the discriminant D =(By, + D)* — A(Cy; +2Ex; +F).

11) At D=0 calculate x, and x, by the formulas for the roots of quadratic

equation:

~(By, +D)-D ~(By,; +D)+D
X, = A , X, = A

12) The end of the second arithmetic cycle.
13) The end of the algorithm.
Il. The case A=0,C#0.

In this case the equation (1) takes the form 2(By + D)x+Cy? +2Ey +F =0.
So we get the following algorithm:

1) Calculate step Ay=(y,—y,)/M,.
2) The beginning of the first arithmetic cycle from j=0to j=M -1

3) Calculate values y; =y, +(j—-1)Ay
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Cyi +2Ey, +F

4) At By, +D =0 calculate x=
2(By; + D)

and carry out displaying to the

screen of pixels with coordinates {x,y;}

5) The end of the first arithmetic cycle.
6) Calculate step Ax=(x, —x,)/M,

7) The beginning of the second arithmetic cycle from j=0to j=M -1

8) Calculate values x; = x, +(j —1)Ax

9) Consider the equation (1), as equation relatively Y if X=X, (cross-section
parallel to axis Y), To6to piBHsanHsa Cy® +2(Bx; + E)y+2Dx; + F =0 i 3HaX01MMO
JUCKPUMIHAHT D =(Bx; + E)* ~C(2Dx; +F). e the equation
Cy? +2(Bx; + E)y+ Ax} +2Dx; +F =0 and find the discriminant
D =(Bx; + E)* —~C(Ax*) +2Dx; +F).

10) At D=0 calculate y, and y, by the formulas for the roots of quadratic
equation:

~(Bx, +E)-VD ~(Bx; +E)+v/D
Y, = C ) Y, = C

and carry out displaying to the screen of pixels with coordinates {X;,Y,} and

{Xj!yz}-
11) The end of the first arithmetic cycle.
12) Calculate step Ay =(y, -v,)/M,.

13)  The beginning of the second arithmetic cycle from j=1to j=M, -1

14) Calculate values y, =y, +(j-1Ay.

15) Consider the equation (1), as equation relatively X if y=1Y; (cross-
section parallel to axis X), i.e. the equation Ax* +2(By; + D)x+Cy? +2Ey, +F =0

and find the discriminant D =(By, + D)* — A(Cy? +2Ex, +F).
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16) At D=>0 calculate x, and x, by the formulas for the roots of quadratic
equation:

~(By, +D)-+D —(By, +D)++D
X, = A , Xy = A

17)  The end of the second arithmetic cycle.
18) The end of the algorithm.

So, in cases when the output curve of the second order on the
screen (window) of terminal could spend a lot of time, that is, the
time performance of output curve is not critical, we carried out output the
curve. In this case, after finding the type of curve by invariants method, for
displaying an ellipse, parabola or hyperbole can be used the cross-sections

method.

A number of important industrial and economic problems (not just
light  industry) naturally united not so much the content as methods for
their solution. As a result of studying "Numerical Methods” we knew the
application of mathematical methods for solving complex problems using

modern computers.
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PART Il. PRACTICAL APPLICATION AND SOFTWARE
1. Mathematical modelling of dispersed phase

drop deformation in nano-filled polyner mixture melts
Key provisions

The purpose was to study using mathematical modeling method of the
influence of nano-additive on dispersed phase component drop deformation
during polymer dispersion melt flow in the entry area of forming hole.

To study the process of drop deformation in a polymer dispersion the
mathematical model developed on the standpoint of structural-continual
approach was improved. The model takes into account the main provisions of
classical fluid mechanics and changes in the structure of the dispersed phase
during its flowing.

It is shown that the modified mathematical model of deformation of the
polymer dispersed phase drop adequately describes the process of
structureformation during real nano-filled polymer compositions flowing. The
values of polypropylene (PP) drops deformation, calculated using the model,
correlate the experimental results: inter-phase tension reduce leads to drops in
deformation increase and to the average diameter of PP microfibers reduction.

The mathematical model of deformation of dispersed phase polymer drop
was improved in order to carry out for theoretical research of nano-filled
polymer mixtures.

Using the developed mathematical model will accelerate researches and
reduce material and energy costs of them.

Introduction

One promising way modification of polymers and their blends are
creating nanocomposites, in which a set of desired properties is achieved
through the optimal combination of components. The use of fillers of different

sizes, shapes and chemical nature allows to improve mechanical properties of
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materials and provide them with new functional characteristics
(incombustibility, bactericidal, conductivity, sorption capacity, etc.). Herewith
essential is the ability of nanoparticles (NP) surface be getting wet by polymer
and the nature and degree of interaction between the NP and macromolecules
polymer on the interphase [1,2]. It is shown that the introduction of silica
nanoparticles in a mixture melt of polypropylene / copoliamide (PP / SPA)
allows to adjust the processes of structureformation of PP in the SPA matrix and
thus improve the structure of the filter material (FM), obtained in processing of
the said mixture. These filters combine high cleaning efficiency and
productivity, and the presence of nanofiller in the FM structure provides them
bactericidal properties[2]. To create new nanomaterials and regulation of their
properties is necessary conducting basic research and the establishment of
appropriate laws.
Problem

Polymers are generally thermodynamically incompatible with each other
in the melt, but the section on individual phases prevents high viscosity of the
components. Shear flow contributes to the formation of different types of
structures by the component of dispersed phase: liquid cylinders (jets), layers,
drops, etc To describe the rheological behavior of polymer dispersion melts are
used the laws of classical mechanics, same as for modeling systems such as
suspensions and emulsions [3]. At the same time a polymer mixture is a special
class of colloidal dispersions of the "polymer in the polymer." An important
difference is formation between the two its components interphase transition
layer whose properties are very different from those of the characteristics of
polymer melt in volume. In nano-filled polymer melts an interphase layer
around the nanoparticles is formed as well at the interphase filler / polymer and
its thickness ranges (0,0004 +~ 0,16) mm [4]. Thus, depending on the degree of
affinity between the polymer and additive nanoparticles can be localized in the

bulk melt or at the interface and influence the magnitude of surface tension.
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Purpose — studying by the mathematical modeling of the influence of
nano-additives on deformation of dispersed phase component drop during
polymer composition melt flow.

The main material

Study of flow patterns and structureformation in polymer dispersions
subject of many articles and books. However, because of the complexity of such
systems research experimental approaches outweigh theoretical. Today received
a number of empirical regularities and mathematical models that describe with
sufficient accuracy the behavior of such systems. In [5] from the standpoint of
structural and continual approach developed a mathematical model that allows
to determine the value of drop deformation depending on the volume
concentration and the rheological properties of the components (viscosity of the
dispersed phase and dispersion medium, their interrelation and flexibility). The
advantage of this model is that it takes into account the main provisions of
continuum mechanics (integrity protection, continuity of functions, describing
its movement and state) and the particular structure of the dispersed phase. Form
drops - is ellipsoid of revolution, which changes size during the interaction with
its dispersion medium but retains volume. Deformation drops depending on the
orientation in the flow accounted for using the tensor strain rate uniaxial tension.

The model is a system of differential equations in dimensionless variables has

the form:
b =0
6 = —%M} sin(26) (1.1)
923+ B2’ + 22— 3sin? 0))
qg 2 2

where: @, 0 - angles that define the orientation of the drop in the stream;
u - the intensity of the current uniaxial stretching;

g - the value of deformation (stretching dimensionless);
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A1, A2, A3 - values that take into account the rheological characteristics of the
components.
In the above equation point means complete original in time.

It is known that solid fillers cause thickening thixotropic effect, which
leads to an increase of viscosity of the polymer melt. In carrying out
modifications of polymer mixture melts an additive is usually pre-injected into
one component. In determining the value of drop deformation using model (1)
the influence of nano-additive can be taken into account due to changes in melt
viscosity of the dispersed phase and dispersion medium, using Einstein's
formula for dilute suspensions:

ne = 10 (1+2,5V) (1.2)
where: 0 - viscosity of the medium; V - volume concentration of suspended
particles.

Experimental studies show that for compositions with a low content of
nano-additive (0,05 + 3,0) masses. %, the viscosity increases slightly within the
error and it coincides with the effective viscosity (nE) defined by the formula
(1.2). Calculations made using the model showed that the concentration of nano-
additive (0,05 + 3,0) masses. % virtually no effect on the amount of strain drops
of the dispersed phase. However, this is inconsistent with research on the impact
of nanofillers on micro and macro-rheological processes in polymer mixture
melt flowing. Thus, in [2] is shown that the introduction of (0,1 + 3,0) masses.
% silica in a mixture melt of polypropylene / co-poliamide improves
fiberization PP in SPA matrix: an average microfibers diameter reduced and
their uniformity of distribution by diameters increasing. The authors attribute
this to the influence of nanoparticles on the interphase phenomena, namely with
decreasing values of surface tension at the interphase.

From classic fundamental ratios that describe thermodynamic equilibrium
in Low-molecular dispersion system it follows that the dispersion medium in a

flow is acting on a drop dispersed phase therein with a force proportional to
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the gradient of shear velocity and medium viscosity and besides this is a
function of the ratio of viscosities components. A drop of polymer dispersed
phase reacts on deformation with force [6]:
Ty =24/ 1 (1.3)
where: yaf - interphase tension; r - the radius of the drop.
At the same time, the ability to drop deformation is largely determined by
its elasticity. In mathematical model (1.1) resistance of drop on its deformation
Is taken into account due to the value of the elastic modulus G, which is

included into the relation to determine the rheological function Al:

_2ab?p.Gc 2 -9y

2 = DT q_M@) (14
p(2+3ab?p, 1)
Y7

where: a, b, a0, b0 - ellipsoid axis in deformed and undeformed state;
G, F - modulus of elasticity and volume concentration of the
dispersed phase;
u, m - viscosity of the dispersion medium and dispersed phase;
4 5
*{

M = , _
ab’(2+3ab® 7 gy 6@ +2[5, =25, (a% +b%))
y7;

10080’ 2B,a’ —a, —2f,) [ 1 1 1)
(g +2B,)a, +2, =2p,(a” +b*)) = 24af, 2p;a’ —(a,+2p,)

The values of ay, fo, a;, fo’s a,”’, B, are obtained in [3].

To assess the effect of the interfacial tension on the ability to deformation
of the dispersed phase drops in the expression for the determination of
rheological function A1 were made changes based on the fact that G = Ty. With
the balance of the elastic power inside (G) and resistance (Ty) equation to

determine A1 will look like:
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° RO aO
A = a-Mo) (1.5)

p(2 +3ab? 3, Z)

where: aq - ellipsoid axis, which volume is equivalent to the volume of sphere
drop with radius r.

The system of differential equations (1) was solved numerically by the
Runge-Kutta method using specially written program in Delphi environment
with Object Pascal language. Modified model tested for adequacy, ie the ability
to predict the results of research in some area with the required accuracy by
comparing the amount of strain drops obtained when using it with experimental
data. This was used in the investigation results of about 1.0. methyl silica %
additive (MC) on the value of interfacial tension (yof}) and average diameter
jets (micro) mixtures PE / spa and polypropylene / polyvinyl alcohol (PE / PVA)
of the 30.6 / 68.4 vol. % (Table).

Table. The dependence of the deformation of the dispersed phase drops on the

value of interphase tension

Mixture Yop, MH/ M d MKM q

PP / SPA 2,60 4,0 125
PP/ SPA/MS 0,75 2,6 620
PP/ PVA 0,73 3,5 273
PP /PVA/MS 0,47 1,7 531

The table shows that the values of interfacial tension obtained by using
the theory of fracture liquid cylinder for nano-filled compositions are much
lower compared to the initial mixture. This results in reduction of energy
consumption in the formation of new surfaces dispersed phase, that promotes the
dispersion and deformation of the droplets in the matrix polymer PP, PP

microfiber average diameter lower than in the initial mixture of (1,5 + 2,1)
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times. Improved model actually describes the process of deformation of a PP
drop in matrix: yop reduction in nano-filled mixtures is accompanied by
increasing values of deformation. The results produced by the model are in good
agreement with the experimental data on the influence of nano-filler on
processes of structure -formation. Introduction filler reduces the average
diameter polypropylene microfibers by reducing the surface tension at the
interface.
Software that implements the described algorithm has been developed [26,
29, 32]. The text of the main program procedures is given in the appendix 14.
Conclusion
It is shown that the improvement of previously established mathematical
model of deformation of drop dispersed phase polymer in a of polymer
mixture melt flow in the entry area forming hole can expand its capabilities and
to use it to predict droplets deformation of component dispersed phase in nano-
filled mixtures. Found that the modified model includes the effect of Nano-
additive on droplet deformation in the terms of interphase tension at the

interphase of the components.

2.Planning the experiment and optimization of the content of

nanoadition in polypropylene monothreads
Key provisions

The purpose was planning the experiment and optimization of the
content of the composition Polypropylene\ binary nanoaddition in order to
obtain Polypropylene monothreads with high mechanical and antibacterial
properties.

For planning the experiment the simplex-grid method has been used in
pseudo coordinates . The optimization of the content of the nanoaddition has

been carried out using the Harrington criterion.
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The influence of the nanoaddition silver\silica (Ag/SiO,) on the
properties of the Polypropylene (PP) monothreads has been explored using the
method of mathematical modeling and the content of composition for their
forming has been optimized.

The mathematical model, that defines the interconnection between the
content of the mixture components and the properties of the nanofilled PP
threads, has been created.

Modified monothreads formed of the optimal content of the
PP\nanoaddition composition combine high level of strength and elasticity and
develop antibacterial effect.

Introduction

Topicality of working out methods of obtaining fibers and threads with
antibacterial effect is caused by necessity in creating some medical products to
cure and protect medical workers and biologists. Attaching bactericidal
properties to threads by inserting metal nanoparticles is one of the most
perspective. Using binary nanocompos, where nanoparticles of biometals are
brought in the surface of inert sorbents, enables creating fundamentally new
materials, that combine antibacterial and sorption effect. Thus, nanocompo
Ag/SiO, is almost ten times more effective compared to original components,
shows high prolonged antibacterial effect and is safer for peoples’ health and the
environment [1].

Problem

In. modern medicine biologically active materials made from
Polypropylene (PP) have become really meaningful, because they are
chemically inert, resistant to microorganisms and have high level of strength
and elasticity. It is known that metallic ions are of high antibacterial properties
and at the same time they have a toxic effect on living beings. Within the
transition to the nanostate, toxicity of metals decreases [2]. Nanoadditions also

have a great influence on mechanical indicators of threads. To define the
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interconnection between the composition content and the characteristics of
threads it Is necessary to carry out a great number of multivariate experiments.
They are connected with time and materials’ expenditure, because the impact of
each factor is explored apart from others, with fixed meanings of other
parameters. One of the ways, which allows to carry out scientific researches fast
enough and find the decisions most approximate to optimal ones with minimal
expenditures, is the usage of mathematical methods of planning the experiment.

Purpose of this work — planning the experiment and optimization of
composition content Polypropylene/ binary nanoaddition in order to obtain
Polypropylene monothreads with high mechanical and antibacterial properties.

Main material

Strength and elasticity are the main parameters that define the safety of
the surgical stitch. When planning the experiment such parameters were chosen
as original ones:
y:1. strength of monothreads when ruining, y, - the original module of threads,
ys - diameter of the retardment of the microorganisms’ growth, y; - diameter of
the retardment of the St. aureus microorganisms’ growth, and original ones
were: x1, X2, x3 — approximate concentrations of PP, Ag and SiO, respectively.

The simplex-grid method in pseudo coordinates is the most appropriate
method for mixture systems optimization [3]. Simplex is the simplest
geometrical figure, formed by the set k+1 independent points in k-dimensional
space. Independent variables are called ‘factors’, space with coordinates X1, X2,
x3 is called «factorial space», and the geometrical delineation of the function of
response in factorial space is called «response surface». Correlation of the

ingredients in systems being explored must satisfy the following condition:

> x =1, where x; is approximate concentration of ingredients (x> 0); q -

quantity of the ingredients (q > 2).
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As certain limits are put on the concentration of some ingredients of
three-component mixture, the researches were carried out in the limited part of
the factorial space. As the result the ‘cut-out * part was received , which was
unsimilar to simplex, and experimental points were located in it. Having written
the coordinates of experimental points of the simplex grid, we received matrix
of planning. In order to use the standard plan the part being explored was
transformed into the new coordinate system
(21,22 Z3... zg) [3]. Simplex vertices were being accepted as independent
ingredients of the mixture, so called pseudocomponents. To transit from the
previous coordinate system (X1, Xo,...xq) to the new one (zi, z, ... z) the
following matrix equation was used: X = AZ.

It can be written in the detailed way:

Xl(U) Xl(l) X1(2) Xl(q) Zl(u)
X XD x@ . x® 7
. = . . . X .
(u) @ (@) () ()
X Xp0 Xg& o X Zq (2.1)
In equation (1) elements of matrix A are the coordinates of vertices of
) x (W) LW . ..
transformed simplex, and % Ta %" (i = 1, 2,..., q) — original and new

coordinates of u- transformed point. Herewith such conditions are being done in

: 0<z; <1, (i=12,... Wz +zW =1
z-coordinates: 0= =t (=L2...@) 27 +z 4.4 zg7 = 1

where u is any point of the factorial space.
To work out a model, which defines the interconnection between the
content of the components and the properties of the modified monothreads, the

incomplete cubical polynoma was used:
Y= BiX + BoXo + BaXg + BoXiXo + PraXiXs + P XoXg + Pros¥i Xo Xg (2.2)
where g, g;, B, - are polynomial coefficients, moreover i#j k=1, 2, 3.

To estimate numeric values of the coefficients of the equation, the plan of

carrying out the experiments in the area of the factorial space being explored
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was prepared (table 1), herewith z-coordinates were chosen from the standard

plan for the model given [3], x-coordinates were counted according to the

formula (1).
Table 1. Simplex-grid plan

Ne  of Plan of experiment

the Plan in Working plan  |obtaine

experime | 41 Z3 Z3 X1 X2 X3 d
1 1 0 0 0.9851 0.0050 | 0.00 A
2 0 1 0 0.9880 | 0.0021 | 0.00 Y2
3 0 0 1 0.9920 | 0.0040 | 0.00 Y3
4 0,5 0,5 0 0.9866 | 0.0036 | 0.00 Vi2
5 0,5 0 0,5 0.9900 | 0.0030 | 0.00 Vis
6 0 0,5 0,5 0.9886 | 0.0045 | 0.00 Va3
7 0,33 | 0,33 | 0,33 | 0.9785 | 0.0037 | 0.00 Vizs

To define the influence of correlation PP/ Ag/SiO, the mixture on the
mechanical and antibacterial properties of monothreads according to the plan a
series of experiments was carried out and original and obtained parameters were
defined (table 2).

Table 2. Influence of the concentration Ag/SiO, on the properties of PP

monothreads
Original Number of the experiment
variable | 1 2 3 4 5 6 7
Y1 480 540 | 590 510 530 570 540
Y2 6200 | 780 | 7900 | 6500 6900 8000 7700
0
Y3 14.1 8,5 13.8 13.5 9,5 13.3 11.4
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On the basis of the data mentioned in table 2 polynomial coefficients (2)
have been counted using the method of the least squares in the matrix form. The
countings have been done using the specially created programme in the Delphi
programming environment on the Object Pascal language. As the result, the
system of the equations has been received (3). It is a mathematical model, that
describes the process being explored in z-coordinates.

y, =479,99z, +539,99z, +590z, + 02,2z, -19,992,z, + 20,00z,z, +104,802,z,2,
y, =6200z, + 7800z, +7899,99z, -2000z,z, -599,997,z, + 600z,z, +17036,1622,z,
y, =141z, +8,5z, +13,8z, +8,82,z, -17,82,z, +8,62,z, -18,332,2,2,
(2.3)

Having defined the coefficients, the mathematical model was being
checked in adequacy, which means ability to predict the results of the research
in some area with necessary exactness. For this, additional experiments were
being put in so called control points, the value of the Student criterion was being
counted and compared with the table data. Received values of the criterion
mentioned are the evidence of the adequacy of this model.

To solve the problem of optimization the so called generalized function
of advisability (D) was used. Harrington offered to use it as the generalized
criterion of optimization [4]. To count value D state values of responses were
transformed into the non-dimensional scale of advisability for each original
parameter using exponential dependency. The generalized criterion of D
optimization was being counted as the geometric mean of partial functions of
advisability. The value of the Harrington criterion is limited within the interval
[0...1] (O stands for absolutely unacceptable value of the response given, 1
stands for the most optimal value of the response).

Software that implements the described algorithm has been developed
[26, 29, 32]. The text of the main program procedures is given in the appendix
13.

Optimal content of the mixture being explored was being defined using

the method of scanning by step 0,01 in z-coordinates. According to the matrix
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equation (1) the content of original components was transformed into the x-
system. While the criterion of advisability D=0.8256 the determined optimal
correlation of mixture components for monothreads formation is mas%: PP —
99,16; Ag — 0,38; SiO, — 0,46, and indicators that characterize the quality of
modified threads, are as following: comparative strength of monothreads when
ruining — 587 MPa, original module — 7944 MPa, diameter of area of St.aureus
bacteria growth retardment — 14,0 mm.

Laboratorial patterns of monothreads have been worked out from the
composition of optimal content and their properties have been explored. It has
been found out, that stitch threads have an antibacterial effect; they also have
good operating characteristics and fix the surgical knot in a proper way due to
high strength and elasticity.

Conclusions

Planning the experiment concerning the influence of the binary
nanoaddition silver\silica on the properties of the Polypropylene monothreads
has been carried out using the method of mathematical modeling. The content of
Ag/SiO, in the PP fusion has been optimized and biologically active

monothreads with maximal mechanical characteristics have been formed.
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Annex 1

The procedure for calculating the determinant of a matrix of arbitrary order

procedure PrDetN(KoefN:Matr;n:integer; var DetN:Real);
var Koef:Matr;
I,j:integer;
Det,Det3:real;
begin
if n=3 then begin
Det3:=KoefN[1,1]*KoefN[2,2]*KoefN[3,3]+
KoefN[2,1]*KoefN[3,2]*KoefN[1,3]+
KoefN[1,2]*KoefN[2,3]*KoefN[3,1]-
KoefN[1,3]*KoefN[2,2]*KoefN[3,1]-
KoefN[2,1]*KoefN[1,2]*KoefN[3,3]-
KoefN[1,1]*KoefN[2,3]*KoefN[3,2];
DetN:=Det3;
end
else
begin
Det:=KoefN][1,1];
fori:=2tondo
begin
for j:=2tondo
begin
Koefli-1,j-1]:=
(KoefNJ[1,1]*KoefNTJi,j]-KoefN[i,1]*KoefN[1,j])/KoefN[1,1];
end;
end;
fori:=1ton-1do
begin
for j:=1to n-1 do
begin
KoefN[i,j]:=Koef[i,j];
end,
end;
PrDetN(KoefN,n-1,DetN);
DetN:=DetN*Det;
end,
end;
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Annex 2

The procedure for solving the system of linear equations by the Cramer method

procedure Kramer(A:matr;b:vector;n:integer;var x:vector);
var i,j:integer;
DetAo,DetAd:real;
temp:vector;
begin
PrDetN(A,n,DetAo); // annex 1
if DetAo=0 then ShowMessage('Kramer metod can not be used’)

else
begin
forj:=1tondo
begin
fori:=1tondo
begin
temp[i]:=A[i.jl;
Alij]:=b[i];
end;
PrDetN(A,n,DetAd); /I annex 1

X[j]:=DetAd/DetAo;
fori:=1tondo
begin
Ali,j]:=templ[i];
end;
end;
end;
end;
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Procedure that implements the Gaussian method

procedure pram_hid(var A:mas);
var
I,j,z,rad,c:integer;
max,temp:real;
x:odnomir;
begin
for i:=1 to n do begin //schotchik stovbchikiv
/Iperestavlayem yakscho diagonalniy element =0
if A[i,i]=0 then begin
for j:=i to ndo
if (A[j,i]<>0) then begin
rad:=j; break; end;
/Iperestavlayem radki
for z:=i to n+1 do begin
temp:=A[i,z]; Ali,z]:=A[rad,z];
a[rad,z]:=temp;
end;
/ldelim radok z diagonalnim elementom
temp:=A[i,i];
forj:=iton+ldo begin
Ali,j]:=A[i,j]/temp;
end;
if i<=nthen
forj:=i+1tondo BEGIN TEMP:=-a[J I];
for z:=i to n+1 do
Alj,z]:=(TEMP*A[1,Z])+A[J,z];
end;
end;
end;

procedure zvor_hid(var A:mas);
var
1,J,z,rad,c:integer;
max,temp:real;
x:odnomir;
begin
for i:=n downto 1 do begin
if i>=1 then
for j:=i-1 downto 1 do BEGIN TEMP:=-a[J,I];
for z:=n+1 downto i do
Al},z]:=(TEMP*AJI,Z])+A[J,z];
end;
end;
end;
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Annex 4

The procedure for solving a system of linear equations (in normal form) by
simple iterations

procedure Iter(A:matr;S1:vector;X0:vector;n:integer;eps:real;var X1:vector);
var Xk,Xk_p1l:vector;
t,t0:real;
i,J,K,k_iter:integer;
begin
t0:=0;
k_iter:=round(In(eps*(1-norma)/norma_v)/In(norma))+1;
fori:=1tondo
begin
XK[i]:=X0[i];
end;
for k:=1to k_iter do
begin
fori:=1tondo
begin
Xk_pl[i]:=S1[i];
forj:=1tondo
begin
Xk_pa[i]:=Xk_p1[i]+A[i,j1*XK[];
end;
t:=abs(Xk_p1[i]-XK[i]);
if t>t0 then t0:=t;
XK[i]:=Xk_p1[i];
end;
fori:=1tondo
begin
X1[i]:=Xk_p1[i];
end;
end;
end;
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Annex 5

The procedure for solving a system of linear equations (in normal form) by the
Seidel method

procedure Zeidel(A:matr;S1:vector;X0:vector;n:integer;eps:real;var X1:vector);
var Xk,Xk_p1l:vector;
t,10,delta:real;
i,J,k,k_iter:integer;
begin {proc}
fori:=1tondo
begin
XK[i]:=XO0[i];
end;
delta:=eps*(1-1/norma);
repeat
fori:=1tondo
begin
Xk_p1[i]:=S1Ji];
forj:=1tondo
begin
if i>) then Xk_p1[i]:=Xk_p1[i]+A[i,j]*Xk_p1][j]
else Xk_p1[i]:=Xk_p1[i]+A[i,j]1*XkK[j];
end;
t:=abs(Xk_p1[i]-XK[i]);
XK[i]:=Xk_p1[i];
end;
until t>delta;
fori:=1tondo
begin
X1[i]:=Xk_p1[i];
end;

end;
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Annex 6

Auxiliary procedures for the implementation of methods for refining the roots of
transcendental equations

procedure znaki_f(a,b:real; var flag:boolean);
var x1:real;
begin
flag:=true;
x1:=f(a)*f(b);
if x1>0 then begin
showMessage('Function doesnt change signum. Choose other interval!’);
flag:=false;
end,
end,;

procedure znak_f (a,b:real; var flagl:boolean);
var x1,x2,f x1,f x2,h,pr:real;
begin
flagl:=true;
h:=0.00001;
x1:=a;
f x1:=f (x1);
while x1<=b do

begin

x2:=x1+h;

f x2:=f (x2);

pr:=f x1*f x2;

if pr<0 then begin

showMessage('First proizv. changes signum. Choose other interval!);

flag:=false;
end;
x1:=X2;
end;
end;

procedure min_f_(a,b,h:real; var m1l:real); var x1,x2,f x1,f x2:real;
begin
x1:=a;
f x1:=abs(f_(x1));
ml.=f x1;
while x1<=b do
begin
X2:=x1+h;
f x2:=abs(f_(x2));
if f_x2<m1l then m1:=f x2;
x1:=x2,
end;
end;
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procedure max_f_(a,b:real; var M2:real);
var x1,x2,f x1,f x2,h:real;
begin
h:=0.00001,
x1:=a;
f_ x1:=abs(f__(x1));
M2:=f  x1;
while x1<=b do
begin
X2:=x1+h;
f  x2:=abs(f__(x2));
if f__x2>M2 then M2:=f__ x2;
x1:=x2;
end;
end;
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Annex 7

The procedure that implements the clarification of the root of the transcendental
equation by the method of half division

procedure M_Dihot(a,b:real; var koren:real);
var c, fa, fb, fc: real,
i:integer;
begin
if abs(b-a)<eps then begin c:=(a+b)/2;
koren:=c;end
else
begin
c:=(ath)/2;
fc:=f(c);
fa:=f(a);
fb:=f(b);
if fc=0 then koren:=c
else
begin

if fa*fc<0 then begin a:=a; b:=c; end else begin a:=c; b:=b; end,;
M_Dihot(a,b,c);
end;
end,;
end,
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Annex 8

The procedure that implements the refinement of the root of the transcendental
equation by the method of tangents

procedure M_Dot(a,b,eps:real;var x:real);
var xk,xk1,razn,delta:real;
i:integer;
begin
i:=1;
min_f (a,b,0.0001,m1); // Bukiuk mporeaypu, OmucaHoi B 104aTKy 6
max_f_ (a,b,M2); // Bukiuk npouenypu, onicaHoi B 101aTky 6
if f(@)*f__(a)>0 then xk:=a else xk:=b;
delta:=power((eps*m1/M2),(1/2));
repeat
XK1:=xK-f(xk)/f_(xk);
razn:=abs(xk1-xk);
xk:=xk1;
=i+l
until(razn<delta);
X:=xK;
end;

117



The procedure for finding the compression ratio

procedure k_szhatia(a,b:real;var g:real; var flag:boolean);
var x1,x2,
f 1,f 2:real;
begin
flag:=true;
f 1:=abs(fi_(x1));
g:=abs(fi_(x1));
if f_1>1 then flag:=false;
while x1<=b do
begin
x2:=x1+0.00001,;
f 2:=abs(fi_(x2));
if f_2>1 then flag:=false
else if f_2>q then q:=f_2;
x1:=x2;
end;
end;
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Annex 9

The procedure that implements the refinement of the root of the transcendental
equation by the method of iterations

procedure ur_iter(x0,eps:real;var x:real);
var xn,xnl,razn:real;
begin
k_szhatia(a,b,q,flag);
if flag=false then showMessage('Method can not be used!")
else
begin
Xn:=x0;
delta:=eps*(1/g-1);
repeat
xnl:=fi(xn);
razn:=abs(xnl-xn);
vivid_iter(xn,xnl,razn);

Xn:=xnl;
until razn<delta;
X:=xnl;
end;
end;
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Annex 10
A procedure that clarifies the roots of a system of two nonlinear equations by
Newton's method

procedure Sys2_Newton(x0,y0,eps:real;var x,y:real);
var deltax, deltay, delta:real;
begin
repeat
A[1,1]:=f1_x(x0,y0);
A[1,2]:=f1_y(x0,y0);
A[2,1]:=f2_x(x0,y0);
A[2,2]:=f2_y(x0,y0);

b[1]:=-f1(x0,y0);
b[2]:=-f2(x0,y0);

Kramer(A,b,2,x1);// annex 2
deltax:=x1[1];
deltay:=x1[2];

x:=x0+deltax;
y:=y0+deltay;

X0:=x;
y0:=y;

if abs(deltax)>abs(deltay) then delta:=abs(deltax) else delta:=abs(deltay);
until (delta<eps);

end;
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Annex 11

A procedure that implements the solution of a system of two differential
equations by the Runge-Kutta method

procedure M_Runge_Kutta(CurrT,CurrTeta,CurrQ,h:real;Var Yk1,Zk1:real);
var k1,k2,k3,k4,
ml,m2,m3,m4,
FQ,FTeta:real;
begin
if CurrQ>0 then begin
FuncQ(CurrT,CurrTeta,CurrQ,FQ);
FuncTeta(CurrT,CurrTeta,CurrQ,FTeta);
kl:=FTeta*h;
m1:=FQ*h;

FuncQ(CurrT+h/2,CurrTeta+k1/2,CurrQ+m1/2,FQ);
FuncTeta(CurrT+h/2,CurrTeta+k1/2,CurrQ+m1/2,FTeta);
k2:=FTeta*h;

m2:=FQ*h;

FuncQ(CurrT+h/2,CurrTeta+k2/2,CurrQ+m2/2,FQ);
FuncTeta(CurrT+h/2,CurrTeta+k2/2,CurrQ+m2/2,FTeta);
k3:=FTeta*h;

m3:=FQ*h;

FuncQ(CurrT+h,CurrTeta+k3,CurrQ+m3,FQ);
FuncTeta(CurrT+h,CurrTeta+k3,CurrQ+m3,FTeta);
k4:=FTeta*h;

m4:=FQ*h;

Yk1:=CurrTeta+(1/6)*(k1+2*k2+2*k3+k4);
ZK1:=CurrQ+(1/6)*(m1+2*m2+2*m3+m4);
end

end,
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Annex 12

Procedures for calculating the Lagrange polynomial

procedure znamen;
var k,i:integer;

begin
for k:=0 to z-1 do begin
znam[Kk]:=1;

for i:=0 to z-1 do begin

if k<>i then begin znam[k]:=znam[K]*(t[K]-t[i]); end;
end;
end;end,;

Procedure I(dx:real; var xc,yc:real);

var k,i:integer;

begin

xc:=0; yc:=0;

for k:=0 to z-1 do begin

fori:=0to z-1do

if i<>k then begin
cK]:=c[K]*(dx-t[i]);
end;
xc:=xc+(X[K]*(c[K]/znam[k]));
yc:=yc+(y[K]*(c[Kl/znam[K]));
end;

end;

procedure paintl(mas:real);

var g:real;

begin

znamen;

0:=-10;

repeat
1(9.xc.yc);
form1.imagel.Canvas.Pixels[round((mas*xc)+(w/2)),round((mas*-yc)+(h/2))]:=clred;
0:=g+0.001;

until g>10;

end,
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Annex 13
Basic procedures and functions for calculation and graphical display of
rheological characteristics of polymer blends

procedure TForm1.Button2Click(Sender: TObject);
var i:integer;
qg:string;
begin
for i:=0to 10 do
begin
SdTcp[i]:=S[i}/Tcp[i]/1000;
LgSdTcp[i]:=In(SdTcp[i])/In(10);
Lg_DJi]:=LgK2+LgSdTcp[i];
end;
for i:=0 to 9 do
begin
dLg_DIi]:=Lg_DI[i]-Lg_DIi+1];
dLgT[i]:=LgT[i]-LgT[i+1];
N[i]:=dLg_D[i]/dLgT[i];
end;
fori:=0to 9 do
begin
LgD[i]:=In(N[i]+3)/In(10)+Lg_D[i];
LgEta[i]:=LgT[i]-LgD[i];
Eta[i]:=Power(10,LgEta[i]);
end,;
Form2.Show;
Form5.Hide;
fori:=0to 9 do
begin
Form2.Memol.Lines.add(IntToStr(i+1));
g:=format('%*.*f',[8,7,SdTcpl[i]]);
Form2.Memo5.Lines.add(q);
g:=format('%*.*f',[5,4,Lg_DIi]]);
Form2.Memo6.Lines.add(q);
g:=format('%*.*f',[5,4,N[i]]);
Form2.Memo7.Lines.add(q);
g:=format('%*.*f',[2,1,Tcp[i]]);
Form2.Memo2.Lines.add(q);
g:=format('%*.*f',[2,0,S[i]]);
Form2.Memo3.Lines.add(q);
g:=format('%*.*f',[5,4,LgT[i]]);
Form2.Memo4.Lines.add(q);
g:=format('%*.*f',[5,4,LgD[i]]);
Form2.Memo8.Lines.add(q);
g:=format('%*.*f',[5,4,LgEta[i]]);
Form2.Memo9.Lines.add(q);
g:=format('%*.*f',[5,1,Eta[i]]);
Form2.Memo10.Lines.add(q);
end;
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end;

procedure TForm1.Button3Click(Sender: TObject);
var i:integer;
qg:string;
begin
for i:=0 to kd-1 do
begin
SdTcp[i]:=S[i]}/Tcp[i]/1000;
LgSdTcp[i]:=In(SdTcp[i])/In(10);
Lg_DJi]:=LgK2+LgSdTcp[i];
end;
for i:=0 to kd-2 do
begin
dLg_DIi]:=Lg_D[i]-Lg_DIi+1];
dLgT[i]:=LgT[i]-LgT[i+1];
N[i]:=dLg_D[i]/dLgT[i];
end;
for i:=0 to kd-2 do
begin
LgD[i]:=In(N[i]+3)/In(10)+Lg_D[i];
LgEta[i]:=LgT[i]-LgD[i];
Eta[i]:=Power(10,LgEta[i]);
end;
Form2.Show;
Form5.Hide;
for i:=0 to kd-2 do
begin
Form2.Memol.Lines.add(IntToStr(i+1));
g:=format('%*.*f',[8,7,SdTcpl[i]]);
Form2.Memo5.Lines.add(q);
g:=format('%*.*f',[5,4,Lg_DIi]]);
Form2.Memo6.Lines.add(q);
g:=format('%*.*f',[5,4,N[i]]);
Form2.Memo7.Lines.add(q);
g:=format('%*.*f',[2,1,Tcp[i]]);
Form2.Memo2.Lines.add(q);
g:=format('%*.*f',[2,0,S[i]]);
Form2.Memo3.Lines.add(q);
g:=format('%*.*f',[5,4,LgT[i]]);
Form2.Memo4.Lines.add(q);
g:=format('%*.*f',[5,4,LgD[i]]);
Form2.Memo8.Lines.add(q);
g:=format('%*.*f',[5,4,LgEta[i]]);
Form2.Memo9.Lines.add(q);
g:=format('%*.*f',[5,1,Eta[i]]);
Form2.Memo10.Lines.add(q);
end;
for i:=0 to kd-2 do
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begin
LgD2[i]:=In(N2[i]+3)/In(10)+Lg_D2Ji];
dLgDJi]:=LgD[i]-LgD[i+1];
LgEta2[i]:=LgT2[i]-LgD2[i];
Eta2[i]:=Power(10,LgEta2[i]);

end;

end;

procedure TForm1.Button5Click(Sender: TObject);
begin

kd:=StrTolnt(Edit34.Text);

end;

procedure vwod(c:STRING; var F_Tcp,F_S,F_LgT:TS);
var f:textfile;
I,j:integer;
begin
assignfile(f,c);
reset(f);
readIn(f,kd);
for i:=0 to kd-1 do
begin
read(f,F_Tcpli]);
read(f,F_S[i]);
read(f,F_LgT[i]);
readIn(f);
end,;
end,

procedure TForm1.Button7Click(Sender: TObject);
var f:textfile;
I,j:integer;

begin
assignfile(f,"inp.txt");
reset(f);
readIn(f,kd);
for i:=0 to kd-1 do
begin
read(f, Tcp[i]);
read(f,S[i]);
read(f,LgTT[i]);
readin(f);
end;
closefile(f);}
Form6.Show;
end,;
end.
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Unit2
Procedure vivid(C:STRING;D:TS);
var fl:textfile;
I,j:integer;
begin
assignfile(f1,C);
append(fl);
for i:=1to kd-1 do
begin
write(f1,D[i]:0:4); /write(f1,'");
writeln(fl);
end;
close(fl);
end;

procedure TForm2.Button1Click(Sender: TObject);
var i:integer;
2, £3,f4:textfile;
qg:string;
begin
kNazhatiy:=kNazhatiy+1;
Nr:=StrTolnt(Edit21. Text);
Form3.Show;
Ncpl:=0;
Ncp2:=0;
for i:=0 to Nr-1 do
begin
Ncpl:=Ncpl+N[i];
end;
Ncpl:=Ncpl/Nr;
for i:=0 to Nr-1 do
begin
LgDJi]:=In(Ncp1+3)/In(10)+Lg_DIiJ;
LgEta[i]:=LgT[i]-LgD[i];
Eta[i]:=Power(10,LgEta[i]);
end;
for i:=0 to Nr-1 do
begin
if kNazhatiy=1 then LgEtal[i]:=LgEta]i];
if kNazhatiy=2 then LgEta2[i]:=LgEta[i];
if kNazhatiy=3 then LgEta3[i]:=LgEta]i];
end;
for i:=0 to Nr-1 do
begin
LgEtal23[i]:=LgEtal[i];
end;
for i:=Nr to (Nr-1)*2 do
begin
LgEtal23[i]:=LgEta2[i];
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end;

for i:=(Nr-1)*2+1 to (Nr-1)*3 do

begin

LgEtal23[i]:=LgEta3[i];

end;
for i:=Nr to kd-1 do

begin

Ncp2:=Ncp2+N[i];

end;

Ncp2:=Ncp2/(kd-1-Nr);
Form3.Editl.Text:=FloatToStr(Ncpl);
Form3.Edit2.Text:=FloatToStr(Ncp2);

for i:=Nr to kd-2 do
begin
LgDJi]:=In(Ncp2+3)/In(10)+Lg_DIiJ;
LgEta[i]:=LgT[i]-LgD[i];
Eta[i]:=Power(10,LgEta[i]);
Memol.Lines.add(FloatToStr(LgEta[i]));
Memo2.Lines.add(FloatToStr(Eta[i]));
end;

for i:=0 to kd-2 do

begin
Form3.Memo4.Lines.add(IntToStr(i+1));
g:=format('%*.*f',[8,7,SdTcpl[i]]);
Form3.Memol.Lines.add(q);
g:=format('%*.*f',[5,4,Lg_D[i]]);
Form3.Memo2.Lines.add(q);
g:=format('%*.*f',[5,4,N[i]]);
Form3.Memo3.Lines.add(q);
g:=format('%*.*f',[2,1,Tcp[i]]);
Form3.Memo5.Lines.add(q);
g:=format('%*.*f',[2,0,S[i]]);
Form3.Memo6.Lines.add(q);
g:=format('%*.*f',[5,4,LgT[i]]);
Form3.Memo7.Lines.add(q);
g:=format('%*.*f',[5,4,LgD[i]]);
Form3.Memo8.Lines.add(q);
g:=format('%*.*f',[5,4,LgEta[i]]);
Form3.Memo9.Lines.add(q);
g:=format('%*.*f',[5,1,Eta[i]]);
Form3.Memo10.Lines.add(q);

end,

vivid (‘out.txt',LgT);

vivid (‘out2.txt',LgEta);
end;

Unit3
procedure Det3x3(Koef:MyArr; var Det:Real);
begin

Det:=Koef[1,1]*Koef[2,2]*Koef[3,3]+
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Koef[2,1]*Koef[3,2]*Koef[1,3]+

Koef[1,2]*Koef[2,3]*Koef[3,1]-

Koef[1,3]*Koef[2,2]*Koef[3,1]-

Koef[2,1]*Koef[1,2]*Koef[3,3]-

Koef[1,1]*Koef[2,3]*Ko0ef[3,2];
end;

procedure MinSq(X,Y:TS; Ac,Bc,Cc:real);

var i,j:integer;
S1,52,S3,54,S5,56,S7:real,

begin

fori:=0to 9 do

begin

S1:=S1+power(X[i],4);
S2:=S2+power(X[i],3);
S3:=S3+X[i]*X[i];
S4:=S4+X[i];
S5:=S5+X[I]*X[i]*Y]i];
S6:=S6+X[i]*Y[i];
S7:=S7+Y]i];

end;

Koef[1,1]:=S1;

Koef[2,1]:=S2;

Koef[3,1]:=S3;

Koef[1,2]:=S2;

Koef[2,2]:=S3;

Koef[3,2]:=54;

Koef[1,3]:=S3;

Koef[2,3]:=54;

Koef[3,3]:=1,;

St[1]:=S5;

St[2]:=S6;

St[3]:=S7;

Kramer3(Koef,St,Ac,Bc,Cc);

end;

Unit4
procedure Scale(A,B:TS;var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real);
var k:integer;
pr,prl,Min,Minl,Max,Max1:Real,
begin
Min:=A[0];
Max:=A[0];
Min1:=BJ[0];
Max1:=B[0];
for k:=1 to kd-2 do
begin
if A[K]>Max then Max:=A[K];
if A[K]<Min then Min:=A[K];
if B[k]>Max1 then Max1:=B[K];
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if B[k]<Min1 then Min1:=BJK];

end;
MinA:=Min;
MinB:=Min1;
pr:=Max-Min;
Mx:=290/pr;
prl:=Max1-Minl,;
My:=270/pr1;
ShA:=pr/10;
ShB:=prl/10;
KA:=0;
KB:=0;
if Min>pr then KA:=1;
if Min1>prl then KB:=1,;
end,;

procedure OsiCoord;

var i:integer;

begin

X0:=35;

Y0:=300;

Form4.Imagel.Canvas.MoveTo(X0,Y0+10);

Form4.Imagel.Canvas.LineTo(X0,5);

Form4.Imagel.Canvas.MoveTo(X0-10,Y0);

Form4.Imagel.Canvas.LineTo(370,Y0);

fori:=1to 11 do

begin
Form4.Imagel.Canvas.MoveTo(X0+10+29*(i-1),Y0-2);
Form4.Imagel.Canvas.LineTo(X0+10+29*(i-1),Y0+2);
Form4.Imagel.Canvas.MoveTo(X0+2,Y0-10-27*(i-1));
Form4.Imagel.Canvas.LineTo(X0-2,Y0-10-27*(i-1));

end;

end;

procedure RazmetkaOsey(A,B:TS);
var i:integer,;
g,91:string;
Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real,
begin
Scale(A,B,Mx,My,KA ,KB,MinA,MinB,ShA,ShB);
fori:=0to 5 do
begin
g:=format('%*.*f',[4,3,MinA]);
Form4.Imagel.Canvas. TextOut(X0+29*2*i+2,Y0+4,9) ;
MinA:=MinA+2*ShA;
end,
fori:=0to 11 do
begin
gl:=format('%*.*f',[4,3,MinB]);
Form4.Imagel.Canvas.TextOut(X0-30,Y0-14-27*i,q1) ;
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MinB:=MinB+ShB;
end;
end;

procedure Griphic_Lg D LgT;
var Mx,My,KA ,KB,MinA,MinB,ShA,ShB:Real,
i;integer;
begin
RazmetkaOsey(LgT,Lg_D);
Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
Form4.Imagel.Canvas.MoveTo
(X0+round(LgT[0]*Mx-KA*MinA{4.9}*Mx+10),
YO0-(round(Lg_D[0]*My-{KB*}{0.3}MinB*My{177.8}))-10);
for i:=1to kd-2 do
begin
Form4.Imagel.Canvas.LineTo
(XO0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx+10{4.6*MSx{181.8-4.6*181.8}),
YO0-(round(Lg_DJi]*My-{KB*}MinB{0.3}*My{177.8}))-10);
end;
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=cIRed;
Form4.Imagel.Canvas.Ellipse(
XO0+round(LgT[i]*Mx-KA*MinA{4.9}*MXx)-2+10,
YO0-round(Lg_D[i]*My-{KB*}{0.3}MinB*My)-2-10,
XO0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10,
YO0-round(Lg_D[i]*My-{KB*}MinB{0.3}*My)+2-10
);

end;

Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Griphic_LgEta_LgT;
var Mx,My,KA ,KB,MinA,MinB,ShA,ShB:Real,
i;integer;
begin
RazmetkaOsey(LgT,LgEta);
Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
Form4.Imagel.Canvas.MoveTo(
XO0+round(LgT[0]*Mx-KA*MinA*Mx)+10,
YO0-round(LgEta[0]*My-{KB*}MinB*My)-10
);
for i:=1to kd-2 do
begin
Form4.Imagel.Canvas.LineTo
(X0+round(LgT[i]*Mx-KA*MinA*Mx)+10,
YO0-round(LgEta[i]*My-{KB*}MinB*My)-10);
end;
for i:=0 to kd-2 do
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begin

Form4.Imagel.Canvas.Pen.Color:=clRed;

Form4.Imagel.Canvas.Ellipse(
X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10,
YO0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-2-10,
X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10,
YO0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+2-10

end;

Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Griphic_Eta_ T;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real ;
i;integer;
T:TS;

begin

for i:=0 to kd-2 do

begin

T[i]:=power(10,LgT[i]);

end;

RazmetkaOsey(T,Eta);

Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);

Form4.Imagel.Canvas.MoveTo
(X0+round(T[0]*Mx-KA*MinA*Mx)+10,
YO0-round(Eta[0]*My-{KB*}MinB*My{177.8})-10);

for i:=1to kd-2 do

begin

Form4.Imagel.Canvas.LineTo

(X0+round(T[i]*Mx-KA*MinA*Mx)+10,
YO0-round(Eta[i]*My-{KB*}MinB*My)-10);

end;

for i:=0 to kd-2 do

begin

Form4.Imagel.Canvas.Pen.Color:=cIRed;

Form4.Imagel.Canvas.Ellipse(
XO0+round(T[i]*Mx-KA*MinA{4.9}*Mx)-2+10,
YO-round(Eta[i]*My-{KB*}{0.3}MinB*My)-2-10,
XO0+round(T[i]*Mx-KA*MinA{4.9}*Mx)+2+10,
YO-round(Eta[i]*My-{KB*}MinB{0.3}*My)+2-10

);
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Points_Lg D LgT;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real,;
i:integer;
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begin
RazmetkaOsey(LgT,Lg_D);
Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=clRed;
Form4.Imagel.Canvas.Ellipse(
X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-2+10,
YO0-round(Lg_D[i]*My-{KB*}{0.3}MinB*My)-2-10,
X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+2+10,
YO0-round(Lg_D[i]*My-{KB*}MinB{0.3}*My)+2-10

);
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Points_LgEta LgT;
var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real,;
i;integer;
begin
kv:=kv+1;
if kv=1 then RazmetkaOsey(LgT,LgEta);
if kv=3 then RazmetkaOsey(LgT,LgEtal23);
if kv=1 then Scale(LgT,LgEta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
if kv=3 then Scale(LgT,LgEtal23,Mx,My,KA ,KB,MinA,MinB,ShA,ShB);
for i:=0 to kd-2 do
begin
if kv=1 then Form4.Imagel.Canvas.Pen.Color:=clRed,
if kv=2 then Form4.Imagel.Canvas.Pen.Color:=clGreen;
if kv=3 then Form4.Imagel.Canvas.Pen.Color:=cIBlue;
Form4.lmagel.Canvas.Pen.width:=2;
Form4.Imagel.Canvas.Ellipse(
XO0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-3+10,
YO0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-3-10,
X0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+3+10,
YO0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+3-10
);

end;

Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Points_Eta_T;

var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real ;
i;integer;
T.TS;

begin

for i:=0 to kd-2 do

begin

T[i]:=power(10,LgT[i]);
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end;
RazmetkaOsey(T,Eta);
Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=clRed;
Form4.Imagel.Canvas.Ellipse(
X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)-2+10,
YO0-round(Eta[i]*My-{KB*}{0.3}MinB*My)-2-10,
X0+round(T[i]*Mx-KA*MinA{4.9}*Mx)+2+10,
YO0-round(Eta[i]*My-{KB*}MinB{0.3}*My)+2-10

);
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Points_ 3 LgEta LgT;
var Mx,My,KA,KB,MinA,MinB,ShA,ShB:Real,;
i;integer;
begin
RazmetkaOsey(LgT,LgEtal23);
Scale(LgT,LgEtal123,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=cIRed;
Form4.lmagel.Canvas.Pen.width:=2;
Form4.Imagel.Canvas.Ellipse(
XO0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)-3+10,
YO0-round(LgEta[i]*My-{KB*}{0.3}MinB*My)-3-10,
XO0+round(LgT[i]*Mx-KA*MinA{4.9}*Mx)+3+10,
YO0-round(LgEta[i]*My-{KB*}MinB{0.3}*My)+3-10
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure TForm4.Button1Click(Sender: TObject);
begin

OsiCoord;

if RadioButtonl.Checked then Griphic_Lg D LgT;
if RadioButton2.Checked then Griphic_LgEta_LgT;
if RadioButton3.Checked then Griphic_Eta T;
//RazmetkaOsey(LgT,Lg_D);

end,

procedure Approx_LgEta LgT;

var Mx,My,KA ,KB,MinA,MinB,ShA,ShB:real;
i:integer;
Ma,Mb,hA hB, Ac,Bc,Cc:real;

begin
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RazmetkaOsey(LgT,LgEta);
Scale(LgT,LgEta,Mx,My, KA ,KB,MinA,MinB,ShA,ShB);
MinSq(LgT,LgEta, Ac,Bc,Cc);
Form4.Imagel.Canvas.MoveTo(X0+10,Y0-10-round(
(Ac*MinA*MinA+Bc*MinA+Cc)*My-MinB*My)
);
Form4.Editl. Text:=FloatToStr(Ac);
Form4.Edit2. Text:=FloatToStr(Bc);
Form4.Edit3.Text:=FloatToStr(Cc);
fori:=1to 101 do
begin
Form4.Imagel.Canvas.LineTo
(X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,
YO0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+
Bc*(MinA+i*ShA/10)+Cc)*My-
MinB*My)-10);
end;
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=cIRed;
Form4.Imagel.Canvas.Ellipse(
XO0+round(LgT[i]*Mx-MinA*Mx)-2+10,
YO0-round(LgEta[i]*My-MinB*My)-2-10,
XO0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10,
YO0-round(LgEta[i]*My-MinB*My)+2-10
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Approx4_LgEta LgT,;
var Mx,My,KA ,KB,MinA,MinB,ShA,ShB:real;

i;integer;

Ma,Mb,hA,hB, Ac4,Bc4,Cc4,Dc4real,
begin
RazmetkaOsey(LgT,LgEta);
Scale(LgT,LgEta,Mx,My,KA KB,MinA,MinB,ShA,ShB);
MinSqg4(LgT,LgEta, Ac4,Bc4,Cc4,Dcd);

Form4.Imagel.Canvas.MoveTo(X0+10,Y0-10-round(
(Ac4*MinA*MinA*MinA+Bc4*MinA*MinA+Cc4*MinA+Dc4)*My
-MinB*My)
);
Form4.Editl. Text:=FloatToStr(Ac4);
Form4.Edit2. Text:=FloatToStr(Bc4);
Form4.Edit3.Text:=FloatToStr(Cc4);
fori:=1to 101 do
begin
Form4.Imagel.Canvas.LineTo
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(X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,
YO0-round((Ac4*(MinA+i*ShA/10)*(MinA+i*ShA/10)*(MinA+i*ShA/10)+
Bc4*(MinA+i*ShA/10)*(MinA+i*ShA/10)+
Cc4*(MinA+i*ShA/10)+Dc4)*My-
MinB*My)-10);
end;
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=cIRed;
Form4.Imagel.Canvas.Ellipse(
XO0+round(LgT[i]*Mx-MinA*Mx)-2+10,
Y0-round(LgEta[i]*My-MinB*My)-2-10,
X0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10,
Y0-round(LgEta[i]*My-MinB*My)+2-10
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;
procedure Approx_Eta T;
var Mx,My,KA ,KB,MinA,MinB,ShA,ShB:real;
i;integer;
Ma,Mb,hA,hB, Ac,Bc,Cc:real;
T:TS;
begin
for i:=0 to kd-2 do
begin
T[i]:=power(10,LgT[i]);
end;

RazmetkaOsey(T,Eta);
Scale(T,Eta,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
MinSq(T,Eta, Ac,Bc,Cc);
Form4.Imagel.Canvas.MoveTo(X0+10,Y0-10-round(
(Ac*MinA*MinA+Bc*MinA+Cc)*My-MinB*My)
)i
Form4.Editl.Text:=FloatToStr(Ac);
Form4.Edit2. Text:=FloatToStr(Bc);
Form4.Edit3.Text:=FloatToStr(Cc);
for i:=1to 101 do
begin
Form4.Imagel.Canvas.LineTo
(X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,
YO0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+
Bc*(MinA+i*ShA/10)+Cc)*My-
MinB*My)-10);
end;
for i:=0 to kd-2 do
begin
Form4.Imagel.Canvas.Pen.Color:=cIRed;
Form4.Imagel.Canvas.Ellipse(
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XO0+round(T[i]*Mx-MinA*Mx)-2+10,
YO0-round(Eta[i]*My-MinB*My)-2-10,
XO0+round(T[i]*Mx-KA*MinA*Mx)+2+10,
YO0-round(Eta[i]*My-MinB*My)+2-10

);
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

procedure Approx_Lg D LgT;
var Mx,My,KA ,KB,MinA,MinB,ShA,ShB:real;
i;integer;
Ma,Mb,hA,hB, Ac,Bc,Cc:real;
begin
RazmetkaOsey(LgT,Lg_D);
Scale(LgT,Lg_D,Mx,My,KA,KB,MinA,MinB,ShA,ShB);
Form4.Imagel.Canvas.MoveTo(
XO0+round(LgT[0]*Mx-MinA*Mx)+10,
Y0-round(Lg_D[0]*My-MinB*My)-10

MinSq(LgT,Lg_D, Ac,Bc,Cc);
Form4.Editl.Text:=FloatToStr(Ac);
Form4.Edit2. Text:=FloatToStr(Bc);
Form4.Edit3.Text:=FloatToStr(Cc);
fori:=1to 99 do
begin
Form4.Imagel.Canvas.LineTo
(X0+round((MinA+i*ShA/10)*Mx-MinA*Mx)+10,
YO0-round((Ac*(MinA+i*ShA/10)*(MinA+i*ShA/10)+
Bc*(MinA+i*ShA/10)+Cc)*My-
MinB*My)-10);
end;
for i:=0 to 9 do
begin
Form4.Imagel.Canvas.Pen.Color:=cIRed;
Form4.Imagel.Canvas.Ellipse(
X0+round(LgT[i]*Mx-MinA*Mx)-2+10,
Y0-round(Lg_DI[i]*My-MinB*My)-2-10,
XO0+round(LgT[i]*Mx-KA*MinA*Mx)+2+10,
YO0-round(Lg_DI[i]*My-MinB*My)+2-10
);
end;
Form4.Imagel.Canvas.Pen.Color:=cIBlack;
end;

Unit6

procedure TForm6.FormCreate(Sender: TObject);
begin

x0:=-1000;
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y0:=2200;
Mx:=300;
My:=300;
kn:=0;
end;

function xk(xmat:real):integer;
begin
xk:=trunc(x0+xmat*Mx);
end;

function yk(ymat:real):integer;
begin
yk:=trunc(y0-ymat*My);

end;

procedure o0si;

var i:integer;

begin
Form6.Imagel.Canvas.Pen.Width:=1,;

//ShowMessage("0");
Form6.Imagel.Canvas.Pen.Color:=clWhite;
Form6.Imagel.Canvas.Rectangle(0,0,Form6.Imagel.Width,Form6.Imagel.Height);
Form6.Imagel.Canvas.Pen.Color:=ciIMoneyGreen;

for i:=0 to 100 do

begin
Form6.Imagel.Canvas.MoveTo(5,y0+i*My);
Form6.Imagel.Canvas.LineTo(Form6.Imagel.Width-5,y0+i*My);
Form6.Imagel.Canvas.MoveTo(5,y0-i*My);
Form6.Imagel.Canvas.LineTo(Form6.Imagel.Width-5,y0-i*My);
Form6.Imagel.Canvas.MoveTo(x0+i*Mx,5);
Form6.Imagel.Canvas.LineTo(x0+i*Mx,Form6.Imagel.Height);
Form6.Imagel.Canvas.MoveTo(x0-i*Mx,5);
Form6.Imagel.Canvas.LineTo(x0-i*Mx,Form6.Imagel.Height);
end;
Form6.Imagel.Canvas.Pen.Color:=cIBlack;
Form6.Imagel.Canvas.MoveTo(5,y0);
Form6.Imagel.Canvas.LineTo(Form6.Imagel.Width-5,y0);
Form6.Imagel.Canvas.MoveTo(x0,5);
Form6.Imagel.Canvas.LineTo(x0,Form6.Imagel.Height);

end;

procedure vvod(c:STRING; var F_Tcp,F_S,F_LgT:TS);
var f:textfile;
I,j:integer;
begin
assignfile(f,c);

reset(f);

readIn(f,kd);

//ShowMessage(IntToStr(kd));
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for i:=0 to kd-1 do

begin

for j:=1 to kd do
read(f,F_Tcpli]);
read(f,F_SJi]);
read(f,F_LgTI[i]);
readin(f);

end;

end;

procedure TForm6.Button1Click(Sender: TObject);
var i:integer;
f:textfile;
begin
assignfile(f,'outinp.txt");
reset(f);
kd:=11,
for i:=0 to kd-3 do
begin
for j:=1to kd do
readIn(f,LgT[i]);
readIn(f);
end;
for i:=0 to kd-3 do
begin
read(f,LgEtal[i]);
readin(f);
end;
for i:=0 to kd-3 do
begin
read(f,LgEta2[i]);
readIn(f);
end;
for i:=0 to kd-2 do
begin
read(f,LgEta3[i]);
readIn(f);
end,
kn:=kn+1;
0si;
Form6.Imagel.Canvas.Pen.width:=2;
Form6.Imagel.Canvas.Pen.Color:=cIRed;
for i:=0 to kd-3 do
begin
Form6.Imagel.Canvas.Ellipse(xk(LgTT[i])-3,yk(LgEtal[i])-
3. xk(LgT[i])+3,yk(LgEtal[i])+3);
end;
Form6.Imagel.Canvas.Pen.Color:=clGreen;
for i:=0 to kd-3 do
begin
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Form6.Imagel.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta2[i])-
3. XK(LgT[i]+3,yk(LgEta2[i])+3);
end,;
Form6.Imagel.Canvas.Pen.Color:=cIBlue;
for i:=0 to kd-3 do
begin
Form6.Imagel.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta3[i])-
3. XK(LgT[i])+3,yk(LgEta3[i])+3);
end,;
end,

procedure TForm6.ScrollBar1Scroll(Sender: TObject; ScrollCode: TScrollCode;
var ScrollPos: Integer);
var i:integer;

begin
Form6.Imagel.Canvas.Pen.Color:=clWhite;
Form6.Imagel.Canvas.Rectangle(0,0,Imagel.Width,Imagel.Height);

Mx:=ScrollPos;

My:=ScrollPos;

0Si;

for i:=0 to kd-1 do

begin
Form6.Imagel.Canvas.Pen.Color:=clRed;
Form6.Imagel.Canvas.Pen.width:=2;
Form6.Imagel.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEtal[i])-

3. XK(LgT[i]D+3,yk(LgEtal[i])+3);
Form6.Imagel.Canvas.Pen.Color:=clGreen;
Form6.Imagel.Canvas.Ellipse(xk(LgTT[i])-3,yk(LgEta2[i])-

3. Xk(LgT[i])+3,yk(LgEta2[i])+3);
Form6.Imagel.Canvas.Pen.Color:=cIBlue;
Form6.Imagel.Canvas.Ellipse(xk(LgT[i])-3,yk(LgEta3[i])-

3. XK(LgT[i]+3,yk(LgEta3[i])+3);
end;

end;

end.
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Annex 14

Basic procedures and functions for graphical display of calculation results
by mathematical model of polymer droplet deformation in flow

Unit3
procedure TForm3.FormShow(Sender: TObject);
Var
i;integer;
SX,SIX,SIY:Real,
StepX,StepY:Real;
OldX,0ldY,NewX,NewY :integer;
MasX:array [0..50] of Real;
MasY':array [1..4,0..50] of Real;
BY:Real;
SY:Real;
MaxY :integer;
Z:integer;
iii;integer;
countL.:integer;
index:integer;
begin
for i:=1to 50 do
MasX[i-1]:= strtofloat(form1.Memol.Lines.Strings[i]);
for i:=1 to form1.Memo3.Lines.Count-1 do
begin
if (i<561) then MasY[1][i-1]:= strtofloat(form1.Memo3.Lines.Strings|[i]);
if (1I>=101) and (i<151) then MasY[2][i-101]:=
strtofloat(form1.Memo3.Lines.Strings|i]);
if (1>=201) and(i<251) then MasY[3][i-201]:=
strtofloat(form1.Memo3.Lines.Strings|i]);
if (1>=301) and (i<351) then MasY[4][i-301]:=
strtofloat(form1.Memo3.Lines.Strings|i]);
end;
Imagel.Canvas.Pen.Color:=cIBlack;
Imagel.Canvas.MoveTo(100,370);
Imagel.Canvas.LineTo(500,370);
Imagel.Canvas.MoveTo(100,370);
Imagel.Canvas.LineTo(100,0);
Imagel.Canvas.Pen.Color:=cIBlack;
SX:=MasX[49]-MasX]O0];
SY:=MasY[1][49]-MasY[1][O];
iIf SY<MasY[2][49]-MasY|[2][0] then SY:=MasY[2][49]-MasY[2][0];
if SY<MasY[3][49]-MasY[3][0] then SY:=MasY[3][49]-MasY[3][0];
iIf SY<MasY[4][49]-MasY[4][0] then SY:=MasY[4][49]-MasY[4][0];
index:=1;
while index<=Countl do
for index:=1 to 4 do
begin
NewX:=round(100+MasX[0]);

140



NewY :=round(370-MasYindex][0]);
Imagel.Canvas.Pen.Width:=2;
Imagel.Canvas.MoveTo(NewX,NewY);
Imagel.Canvas.Pen.Color:=clRed,
Imagel.Canvas.LineTo(NewX,NewY);
Imagel.Canvas.TextOut(80,NewY floattostr(round(MasY[index][0])));
Imagel.Canvas.Pen.Width:=1;
Imagel.Canvas.MoveTo(80,NewY);
Imagel.Canvas.LineTo(100,NewY);
Imagel.Canvas.TextOut(NewX,380,floattostr((MasX[0])));
Imagel.Canvas.MoveTo(NewX,370);
Imagel.Canvas.LineTo(NewX,380);
Imagel.Canvas.MoveTo(NewX,NewY);
Imagel.Canvas.Pen.Color:=cIBlack;
fori:=1to 49 do
begin
Imagel.Canvas.Pen.Width:=2;
SIX:=MasX[i]-MasX[i-1];
SIY:=MasY[index][i]-MasY [index][i-1];
StepX:=(350*SIX)/SX;
StepY:=(350*S1Y)/SY;
NewX:=Round(NewX+StepX);
NewY:=Round(NewY-StepY);
Imagel.Canvas.LineTo(NewX,NewY);
Imagel.Canvas.Pen.Width:=5;
Imagel.Canvas.Pen.Color:=clRed;
Imagel.Canvas.LineTo(NewX,NewY);
if i =49 then
begin
Imagel.Canvas.Pen.Width:=1;
Imagel.Canvas. TextOut(60,NewY -5,floattostr(round(MasY [index][i])));
Imagel.Canvas.MoveTo(80,NewY);
Imagel.Canvas.LineTo(100,NewY);
Z:=round(MasY [index][i]);
if MaxY>NewY then MaxY:=NewY;
end,
if i mod 10 = 0 then
begin
Imagel.Canvas.Pen.Width:=1;
Imagel.Canvas. TextOut(NewX,380,floattostr(((MasX[i])*100000000)));
Imagel.Canvas.MoveTo(NewX,370);
Imagel.Canvas.LineTo(NewX,380);
Imagel.Canvas.MoveTo(NewX,NewY);
end,
end;
if index=1 then
Imagel.Canvas. TextOut(NewX+10,NewY, Tetal =" +form8.editl.text);
if index=2 then
Imagel.Canvas. TextOut(NewX+10,NewY, Teta2 ="' +form8.edit4.text);
if index=3 then
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Imagel.Canvas. TextOut(NewX+10,NewY, Teta3 ="' +form8.edit5.text);
if index=4 then
Imagel.Canvas. TextOut(NewX+10,NewY, Teta4 ="' +form8.edit6.text);
inc(index);
end;
iii:=0;
countL:=0;
while iii<round(370-maxy) do
begin
Ii:=iii+round((370-maxy)/20);
Imagel.Canvas.Pen.Width:=1;
Z:=round((MaxY-iii)/MaxY);
if countL mod 2 =0 then
begin
Imagel.Canvas.MoveTo(90,370-iii);
Imagel.Canvas.LineTo(100,370-iii);
end
else
begin
Imagel.Canvas.MoveTo(80,370-iii);
Imagel.Canvas.LineTo(100,370-iii);
Imagel.Canvas. TextOut(80,370-iii,floattostr(round((iii)*Z/(370-MaxY))));
end;
inc(countL);
end;
end;

procedure TForm3.Button2Click(Sender: TObject);
begin
Imagel.canvas.fillrect(Imagel.canvas.cliprect);
form1.Memo3.Clear;
form1.Memo3.Text:=Tlycto";
Imagel.canvas.fillrect(Imagel.canvas.cliprect);
Labell.Visible:=false;
Label2.Visible:=false;

form1.Fr:=0;

forml.eta:=0;

forml1l.mu:=0;

form1.R0:=0;

form1.R0O_3:=0;

form1.d:=0;

forml.d_:=0;

form1.Teta0:=0;

form1.CurrTeta:=0;

form1.h:=0;

form1.Q0:=0;

form1.CurrQ:=0;

Sigma:=0
end,;
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procedure TForm3.SavelClick(Sender: TObject);
begin
if  SaveDialogl.Execute then
Imagel.Picture.SaveToFile(SaveDialogl.FileName+'.bmp');
end;

procedure TForm3.Print1Click(Sender: TObject);
var
X1,X2,Y1,Y2:Integer,;
PointsX,PointsY:double;
PrintDIg:TPrintDialog;
begin
PrintDIg:=TPrintDialog.Create(Owner);
if PrintDlg.Execute then
begin
Printer.BeginDoc;
Printer.Canvas.Refresh;
Printer.Title:="Results’;
PointsX:=GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSX)/100;
PointsY:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSY)/100;
X1:=50;
Y1:=500;
X2:=round(X1+Imagel.Picture.Bitmap.Width*PointsX);
Y2:=round(Y1+Imagel.Picture.Bitmap.Height*PointsY);
Printer.Canvas.CopyRect(Rect(X1,Y1,X2,Y2),Imagel.Picture.Bitmap.Canvas,
Rect(0,0,Imagel.Picture.Bitmap.Width,Imagel.Picture.Bitmap.Height));
Printer.EndDoc;
end;
PrintDIlg.Free;
end;
end.

Unit7
procedure TForm7.Button1Click(Sender: TObject);
begin
form9.Countl:=0;

if Editl. Text<>" then

begin

inc(form9.Countl);
form1.Fr:=StrToFloat(form1.Edit4.Text);
form1.eta:=StrToFloat(Edit3.Text);
forml.mu:=StrToFloat(Edit2. Text);

Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);
V:=StrToFloat(Editl.Text);
RO_3:=V/((4/3)*3.1415);
RO:=power(R0_3,1/3);
form1.RO:=StrToFloat(form1.Edit12. Text);
form1.R0O_3:=form1.R0*form1.RO*form1.RO;
form1.V:=(4/3)*3.1415*form1.R0_3;
Form1.Editl.Text:=FloatToStr(form1.V);
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form1.d:=StrToFloat(form1.Edit10.Text);
forml1.d_:=StrToFloat(form1.Editl1.Text);
form1.G:=G;
form1.TetaO:=StrToFloat(Edit7.Text);
form1.CurrTeta:=form1.TetaO;
form1.h:=StrToFloat(form1.Edit8.Text);
form1.Q0:=StrToFloat(form1.Edit5.Text);
form1.CurrQ:=form1.Q0;
Sigma:=StrToFloat(Editl.text);
K:=0.15e8;
G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-
form1.Q0/(form1.CurrQ+0.0000001)));
form1.G:=G;
Form7.Editl.Text :=FloatToStr(G);
form1.G:=StrToFloat(Edit1.Text);
form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));
form1.a0:=form1.R0*power(form1.CurrQ,2/3);
A0:=StrToFloat(Edit5.Text);
CurrA:=A0;
BO:=power(RO*R0*R0/A0,1/2);
g0:=A0/B0;}
Form1.Button5.Click;
end;
if Edit4.Text<>" then
begin
inc(form9.Countl);
form1.Fr:=StrToFloat(form1.Edit4.Text);
form1.eta:=StrToFloat(Edit3.Text);
form1.mu:=StrToFloat(Edit2. Text);
Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);
V:=StrToFloat(Editl. Text);
RO_3:=V/((4/3)*3.1415);
RO:=power(R0O_3,1/3);
form1.R0O:=StrToFloat(form1.Edit12.Text);
form1.R0O_3:=form1.R0*form1.R0*form1.RO;
form1.V:=(4/3)*3.1415*form1.R0_3;
Form1.Editl.Text:=FloatToStr(form1.V);
form1.d:=StrToFloat(form1.Edit10.Text);
forml.d_:=StrToFloat(form1.Edit11.Text);
form1.G:=G;
form1.G:=StrToFloat(Edit4.Text);
form1.TetaO:=StrToFloat(Edit7.Text);
form1.CurrTeta:=form1.Teta0;
form1.h:=StrToFloat(form1.Edit8.Text);
form1.Q0:=StrToFloat(form1.Edit5.Text);
form1.CurrQ:=form1.Q0;
Sigma:=StrToFloat(edit4.text);
K:=0.15e8;
G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-
form1.Q0/(form1.CurrQ+0.0000001)));

144



form1.G:=G;
Form7.Edit4.Text:=FloatToStr(G);
form1.G:=StrToFloat(Edit4.Text);
form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));
form1.a0:=form1.R0*power(form1.CurrQ,2/3);
Form1.Button5.Click; end,;
if Edit5. Text<>" then
begin
inc(form9.Countl);
form1.Fr:=StrToFloat(form1.Edit4.Text);
form1.eta:=StrToFloat(Edit3.Text);
forml.mu:=StrToFloat(Edit2. Text);
Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);
V:=StrToFloat(Editl.Text);
RO_3:=V/((4/3)*3.1415);
RO:=power(RO_3,1/3);
form1.RO:=StrToFloat(form1.Edit12. Text);
form1.R0O_3:=form1.R0*form1.RO*form1.RO;
form1.V:=(4/3)*3.1415*form1.R0_3;
Form1.Editl.Text:=FloatToStr(form1.V);
form1.d:=StrToFloat(form1.Edit10.Text);
form1.d_:=StrToFloat(form1.Editl1.Text);
form1.G:=G;
form1.G:=StrToFloat(Edit5.Text);
form1.Teta0:=StrToFloat(Edit7.Text);
form1.CurrTeta:=form1.Teta0;
form1.h:=StrToFloat(form1.Edit8.Text);
form1.Q0:=StrToFloat(form1.Edit5.Text);
form1.CurrQ:=form1.Q0;
Sigma:=StrToFloat(edit5.text);
K:=0.15€8;
G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-
form1.Q0/(form1.CurrQ+0.0000001)));
form1.G:=G;
Form7.Edit5.Text:=FloatToStr(G);
form1.G:=StrToFloat(Edit5.Text);
form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));
form1.a0:=form1.R0*power(form1.CurrQ,2/3);
AQ:=StrToFloat(Edit5.Text);
CurrA:=A0;
BO:=power(RO*R0*R0/A0,1/2);
g0:=A0/B0;
Form1.Button5.Click;
end,
if Edit6.Text<>" then
begin
inc(form9.Countl);
form1.Fr:=StrToFloat(form1.Edit4.Text);
form1.eta:=StrToFloat(Edit3.Text);
form1.mu:=StrToFloat(Edit2. Text);
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Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);
V:=StrToFloat(Editl.Text);
RO_3:=V/((4/3)*3.1415);
RO:=power(RO_3,1/3);
form1.RO:=StrToFloat(form1.Edit12.Text);
form1.R0O_3:=form1.R0*form1.RO*form1.RO;
form1.V:=(4/3)*3.1415*form1.R0_3;
Form1.Editl.Text:=FloatToStr(form1.V);
form1.d:=StrToFloat(form1.Edit10.Text);
form1.d_:=StrToFloat(form1.Editl1.Text);
form1.G:=G;
form1.G:=StrToFloat(Edit6.Text);
form1.TetaO:=StrToFloat(Edit7.Text);
form1.CurrTeta:=form1.Teta0;
form1.h:=StrToFloat(form1.Edit8.Text);
form1.Q0:=StrToFloat(form1.Edit5.Text);
form1.CurrQ:=form1.Q0;
Sigma:=StrToFloat(edit6.text);
K:=0.15€8;
G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-
form1.Q0/(form1.CurrQ+0.0000001)));
forml1.G:=G;
form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));
form1.a0:=form1.R0O*power(form1.CurrQ,2/3);
Form1.Button5.Click;end;
end;

Unit8
procedure TForm8.Button1Click(Sender: TObject);
begin
if Editl. Text<>" then
begin
inc(form3.Countl);
form1.Fr:=StrToFloat(form1.Edit4.Text);
forml.eta:=StrToFloat(Edit3.Text);
forml.mu:=StrToFloat(Edit2. Text);
Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);
V:=StrToFloat(Editl.Text);
RO:=power(R0O_3,1/3);
form1.RO:=StrToFloat(form1.Edit12.Text);
form1.R0O_3:=form1.R0*form1.R0O*form1.RO;
form1.V:=(4/3)*3.1415*form1.R0_3;
Form1.Editl. Text:=FloatToStr(form1.V);
form1.d:=StrToFloat(form1.Edit10.Text);
forml.d_:=StrToFloat(form1.Edit11.Text);
Sigma:=StrToFloat(edit7.text);
K:=0.15€8;
G:=(Sigma*K/form1.R0)*(power(form1.CurrQ,2/3)/(1-
form1.Q0/(form1.CurrQ+0.0000001)));
form1.G:=G;
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form1.Teta0:=StrToFloat(Editl. Text);
form1.CurrTeta:=form1.Teta0;
form1.h:=StrToFloat(form1.Edit8.Text);
form1.Q0:=StrToFloat(form1.Edit5.Text);
form1.CurrQ:=form1.Q0;
form1.b0:=form1.R0*power(form1.CurrQ,(-1/3));
form1.a0:=form1.R0*power(form1.CurrQ,2/3);
Form1.Button5.Click;
end;
if Edit4.Text<>" then
begin
inc(form3.Countl);
form1.Fr:=StrToFloat(form1.Edit4.Text);
form1.eta:=StrToFloat(Edit3.Text);
form1.mu:=StrToFloat(Edit2. Text);
Form1.Edit9 .Text:=FloatToStr(form1.eta/form1.mu);
end;
end.

Unit9

procedure TForm9.Formshow(Sender: TObject);
Var
i;integer;
SX,SIX,SIY:Real,
StepX,StepY:Real;
OldX,0ldY,NewX,NewY :integer;
MasX:array [0..99] of Real;
MasY:array [1..4,0..99] of Real,
BY:Real;
SY,Sigma,KG:Real,
index:integer;
MaxY :integer;
Z:integer;
iii;integer;
countL:integer;
begin
for i:=1to 100 do
MasX[i-1]:= strtofloat(form1.Memol.Lines.Strings[i]);
for i:=1 to Form1.Memo3.Lines.Count-1 do
begin
if (i<101) then MasY[1][i-1]:= strtofloat(form1.Memo3.Lines.Strings[i]);
if (i>=101) and (i<201) then MasY[2][i-101]:=
strtofloat(form1.Memo3.Lines.Strings[i]);
if (i>=201) and(i<301) then MasY[3][i-201]:=
strtofloat(form1.Memo3.Lines.Strings|[i]);
if (i>=301) and (i<401) then MasY [4][i-301]:=
strtofloat(form1.Memo3.Lines.Strings|i]);
end;
Imagel.Canvas.MoveTo0(100,370);
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Imagel.Canvas.LineTo(500,370);
Imagel.Canvas.MoveTo(100,370);
Imagel.Canvas.LineTo(100,0);
Imagel.Canvas.Pen.Color:=cIBlack;
SX:=MasX[99]-MasX][0];
SY:=MasY[1][99]-MasY[1][O];
if SY<MasY[2][99]-MasY[2][0] then SY:=MasY[2][99]-MasY[2][O0];
iIf SY<MasY[3][99]-MasY[3][0] then SY:=MasY[3][99]-MasY[3][0];
if SY<MasY[4][99]-MasY[4][0] then SY:=MasY[4][99]-MasY[4][O0];
index:=1;
MaxY:=round(MasY[1][99));
while index<=Countl do
for index:=1 to 4 do
begin
NewX:=round(100+MasX[0]);
NewY :=round(370-MasY[index][0]);
Imagel.Canvas.Pen.Width:=5;
Imagel.Canvas.MoveTo(NewX,NewY);
Imagel.Canvas.Pen.Color:=clRed;
Imagel.Canvas.LineTo(NewX,NewY);
Imagel.Canvas.TextOut(80,NewY floattostr(round(MasY[index][0])));
Imagel.Canvas.Pen.Width:=1;
Imagel.Canvas.MoveTo(80,NewY);
Imagel.Canvas.LineTo(100,NewY);
Imagel.Canvas.TextOut(NewX,380,floattostr((MasX[0])));
Imagel.Canvas.MoveTo(NewX,370);
Imagel.Canvas.LineTo(NewX,390);
Imagel.Canvas.MoveTo(NewX,NewY);
fori:=1to 99 do
begin
Imagel.Canvas.Pen.Width:=3;
SIX:=MasX[i]-MasX[i-1];
SIY:=MasY[index][i]-MasY [index][i-1];
StepX:=(350*SIX)/SX;
StepY:=(350*S1Y)/SY;
NewX:=Round(NewX+StepX);
NewY:=Round(NewY-StepY);
Imagel.Canvas.LineTo(NewX,NewY);
Imagel.Canvas.Pen.Width:=3;
Imagel.Canvas.Pen.Color:=clRed;
Imagel.Canvas.LineTo(NewX,NewY);
if i =99 then
begin
Imagel.Canvas.Pen.Width:=1,
Imagel.Canvas.TextOut(80,NewY floattostr(round(MasY[index][i])));
Z:=round(MasY/[index][i]);
Imagel.Canvas.MoveTo(80,NewY);
Imagel.Canvas.LineTo(100,NewY);
if MaxY>NewY then MaxY:=NewY;
end;
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if i mod 10 = 0 then

begin

Imagel.Canvas.Pen.Width:=1;

Imagel.Canvas. TextOut(NewX,380,floattostr(((MasX[i])*100000000)));
Imagel.Canvas.MoveTo(NewX,370);
Imagel.Canvas.LineTo(NewX,380);
Imagel.Canvas.MoveTo(NewX,NewY);
Imagel.Canvas.Pen.Color:=clBlack;

end;

end;
if index=1 then
Imagel.Canvas. TextOut(NewX+10,NewY,'Sigmal ="' +form7.editl.text);

if index=2 then

Imagel.Canvas. TextOut(NewX+10,NewY,'Sigma2 ="' +form7.edit4.text);

if index=3 then

Imagel.Canvas. TextOut(NewX+10,NewY,'Sigma3 ="' +form7.edit5.text);

if index=4 then

Imagel.Canvas. TextOut(NewX+10,NewY,'Sigma4 = ' +form7.edit6.text);
inc(index);
end;

iii:=0;
countL:=0;

while iii<round(370-maxy) do
begin

iii:=iii+round((370-maxy)/20);
Imagel.Canvas.Pen.Width:=1;
Z:=round((MaxY-iii)/MaxY);

if countL mod 2 =0 then

begin
Imagel.Canvas.MoveTo(90,370-iii);
Imagel.Canvas.LineTo(100,370-iii);
end

else

begin
Imagel.Canvas.MoveTo(80,370-iii);
Imagel.Canvas.LineTo(100,370-iii);
Imagel.Canvas.TextOut(80,370-iii,floattostr(round((iii)*Z/(370-MaxY))));
end;

inc(countL);

end;

procedure TForm9.SavelClick(Sender: TObject);

SaveDialogl.Execute then

Imagel.Picture.SaveToFile(SaveDialogl.FileName+'.bmp");

procedure TForm9.Print1Click(Sender: TObject);
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var
X1,X2,Y1,Y2:Integer,
PointsX,PointsY:double;
PrintDIg:TPrintDialog;
begin
PrintDIg:=TPrintDialog.Create(Owner);
if PrintDlg.Execute then
begin
Printer.BeginDoc;
Printer.Title:='"Results’;
Printer.Canvas.Refresh;
PointsX:=GetDeviceCaps(Printer.Canvas.Handle,LOGPIXELSX)/100;
PointsY:=GetDeviceCaps(Printer.Canvas.Handle, LOGPIXELSY)/100;
X1:=50;
Y1:=500;
X2:=round(X1+Imagel.Picture.Bitmap.Width*PointsX);
Y2:=round(Y1+Imagel.Picture.Bitmap.Height*PointsY);
Printer.Canvas.CopyRect(Rect(X1,Y1,X2,Y2),Imagel.Picture.Bitmap.Canvas,
Rect(0,0,Imagel.Picture.Bitmap.Width,Imagel.Picture.Bitmap.Height));
Printer.EndDoc;
end;
PrintDlg.Free;
end;
end.
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