
VII Міжнародна науково-практична конференція

«Мехатронні системи: інновації та інжиніринг»

Інформаційні та компʼютерно-інтегровані

технології

252

UDC 004.032.26

ANALYSIS OF NEURAL NETWORK ALGORITHMS İN
ARTIFICAL İNTELLIGENCE

Nuriyeva V., Ahmadova N.
Mingachevir State University, Azerbaijan

Keywords: algorithm; artificial intelligence; neural network; knot;
method.

Introduction
The use of automated systems in modern society has had a positive impact

on the improvement of intelligent systems and the development of new
information technologies. In the field of artificial intelligence, neural networks
reflect the activity of the human brain, allowing computer programs to detect
patterns and solve common problems. The concept of an artificial neural
network originated in the study of processes. It occurs in the brain and tries to
model processes. Models based on the analysis of neural network algorithms can
be used for practical purposes: in forecasting, image recognition, control tasks,
etc. Artificial Neural Networks (ANNs) have many different coefficients that
can be optimized. Thus, it can handle more variability compared to traditional
models.

Related Works
Various scientific studies have been conducted in the following articles on

the analysis of neural network algorithms in artificial intelligence.
The redistribution algorithm proposed in [1] is the most popular

procedure. This is a relatively efficient procedure for evaluating a set of weights
and achieving a satisfactory connection between input and output as long as high
accuracy is not required. However, the approximation speed of this procedure is
slow, which is not surprising, because the regression algorithm is essentially the
most steep descent method, theoretical and numerical work in the field of
optimization has shown that simple gradient methods have very slow
convergence.

[2], [3], [4] have proposed several acceleration methods to speed up the
merging procedure.

[5] proposed to increase the scale of the derivative as a function of
successive levels. [6] suggested one-way search methods for each dynamic
optimization step.

[7] presents changes in the error function used to measure global net
performance.

Theoretical and numerical results proved that Quasi-Newton algorithms
are superior to gradient algorithms [8]. For this reason, several researchers have
proposed these methods to teach neural networks.

[9] used DFP and BFGS methods and compared them with a
redistribution algorithm. This comparison showed that the DFP and BFGS
methods require less iteration, but each iteration requires an update of the
hessian approximation and more computational time.

[10] proposed a stochastic method and noted that this method was better
than deterministic methods such as conjugated gradients and variable metrics.

VII Міжнародна науково-практична конференція

«Мехатронні системи: інновації та інжиніринг»

Інформаційні та компʼютерно-інтегровані

технології

253

[11] used an optimization algorithm for nonlinear smallest squares
amplified by the Quasi-Newton algorithm to perform additional iterations of the
“global bulk” optimization problem.

Statement of the problem
Neural networks are a key area for the study of modeling capabilities.

Algorithmic, mathematical and complex program tasks are solved independently
with the help of artificial intelligence and modern supercomputers.

ANN works very similar to the human brain. By making the necessary
connections, we can replicate the work of the brain using silicon and wires that
act like dendrites and neurons. Because stimuli from the external environment
are perceived in the same way by dendrites, they generate electrical impulses
that travel through the input neural network.

ANN consists of several nodes that act like neurons. The nodes are
connected by links (wires) to communicate with each other. Nodes receive input
information to perform small operations on trained data, and the results of these
operations are transmitted to other nodes (neurons).

The output on a node is called its node value. A diagram showing the
basic structure of a neuron is given in figure 1.

Figure 1. The basic structure of a neuron

The main computing unit of a neural network is a neuron or node. It takes
values from other neurons and calculates output. Each node is associated with a
neuron weight (w). This weight is given by the relative importance of that
particular neuron or node. Thus, if we take f as a node function, the f node
function will provide the output as follows. The output of the neuron is
calculated by the formula (1):

(Y) = f (w1.X1 + w2.X2 + b) (1)
While w1 and w2 are weights, X1 and X2 are numeric inputs, and b is

biased. The function f above is a nonlinear function and is also called the
activation function. Its main purpose is to present nonlinearity, because almost
all real-world data is nonlinear.

Self-learning forward neural networks require a learning process to adapt
the output set to the input set. The learning process consists of determining the
W weights that characterize the connections between neurons and create
connections between input and output.

Analysis of neural network algorithms
Studies have shown that Quasi-Newtonian methods are limited to

medium-sized applications in terms of memory time required to perform

VII Міжнародна науково-практична конференція

«Мехатронні системи: інновації та інжиніринг»

Інформаційні та компʼютерно-інтегровані

технології

254

computational time and hessian approximation updates. This article proposes a
change to the classical approach of the Quasi-Newton method: a new hessian
approach that takes into account the structure of the network. More precisely,
the hessian dimension is not the total number of weights to be calculated, but
rather the number of neurons at each level. Because Hessian limits the size, our
approach ensures that the neural network works properly without computational
time and memory area problems.

Gradient descent is one of the most popular optimization algorithms in
machine learning. Used to teach machine learning model. Simply put, it is
mainly used to find the values of the coefficients that reduce the cost function as
much as possible. By setting the values of the parameters, the values are
adjusted iteratively to reduce the lost function using calculations. If we reduce
the input a little, the gradient will significantly change the output of any
function. This is because there is an algorithm that minimizes the data.

As you can see, gradient descent is a very robust technique, but there are
many areas where gradient descent does not work properly. Here are some of
them: If the algorithm is not executed correctly, we may encounter something
like the problem of gradient disappearance. These occur when the gradient is too
small or too large; Problems arise when the organization of the data creates a
non-convex optimization problem. Gradient descent only works in the solution
of convex optimization problems; One of the most important factors to look for
when applying this algorithm is resources, and if there is less memory to apply,
it is not convenient to use a gradient descent algorithm.

Newton's method is a secondary optimization algorithm. It is called
secondary because it uses the Hessian matrix. In the optimization algorithm of
the Newtonian method, the roots are applied to the first derivative of the
function of double differentiation f so that it can find stationary points.
Evaluates the loss index first according to the steps required by the Newton
method for optimization. It then checks whether the stop criteria are true or
false. If it is wrong, it calculates Newton's direction and speed of motion, and
then improves the parameters or weights of the neuron, and so on for the same
period. It was found that there is less iteration compared to the gradient descent
to obtain the minimum value of the function. Although the gradient takes fewer
steps compared to the descent algorithm, it is still not widely used because it is
very expensive in terms of accurate calculation of the hessian matrix and its
inverse calculation.

Conjugated gradient - this algorithm is a method that can be considered as
a transition between the gradient descent and the Newtonian method. The main
difference is that the gradient accelerates the slow approximation associated
with the descent. More importantly, it can be used for both linear and nonlinear
systems and is an iterative algorithm. Gradient creates an approximation faster
than descent, the reason it can do this is because the search in the Conjugate
Gradient algorithm is combined with the directions of the merge, so it merges
faster than the gradient descent algorithms. This method is more effective than
gradient descent in neural network training because it does not require a hessian
matrix that increases the computational load. It is advisable to use this method in
large neural networks.

VII Міжнародна науково-практична конференція

«Мехатронні системи: інновації та інжиніринг»

Інформаційні та компʼютерно-інтегровані

технології

255

The Quasi-Newton method is an alternative to the Newtonian method
because the Newtonian method is expensive in terms of computation. This
method solves the shortcomings to such an extent that it creates an inverse
Hessian approximation during the calculation of the Hessian matrix and each
iteration of the algorithm. This approximation is calculated using data from the
first derivative of the loss function. The goal is that the topology of the function
is better understood by calculating the second derivative of the function, which
in turn leads to the selection of a more efficient descent direction. In this case,
the weight change will be calculated by the formula (2):

∆W (n) = λG (n) (2)
Here, λ is the step to minimize the function in the descent direction, and

G(n) defines the descent direction and is determined by formula (3):
G (n) = - [H (n)] ^ (- 1) S (n) (3)

Here, H (n) is the Hessian matrix. The main difficulty of these approaches
is that it is very tedious to find a solution to this system in each iteration.
Variable metric methods, also called quasi-Newtonian methods, can be solved
by approximating the Hessian matrix with the function S (n), which is a first-
order derivative of the inverse Hessian matrix. These methods are the most
popular unlimited optimization methods, and BFGS is the most widely used
update method (4).

∆ [H ̃ (n)] ^ (- 1) = [H ̃ (n + 1)] ^ (- 1) - [H ̃ (n)] ^ (- 1) (4)
Our first approach ignores secondary interactions between different levels

of weights and considers a separate H matrix for each level. The second
approach assumes that only the weights associated with the same neuron have
significant secondary interactions, and that it connects the H matrix with each
output and latent neuron. The main advantage of linking the Hessian matrix to a
level or neuron is that it significantly reduces the overall size of the matrix to be
calculated.

The formation of weight changes as a function of our simplified approach
is very similar to the design of the Quasi-Newtonian methods. They differ in the
elements selected to create the vector gradient. In particular, for the weight to
change according to the level, let the elements S ^ L (n) be all vectors S_ (i ́J ́) ^
((L)) (n) of one level, where:

S = [S ^ ((1)), S ^ ((2))]
Here, S ^ ((1)), (x + 1) consists of h elements, and S ^ ((2)) consists of (h

+ 1) o elements.
The weight change for each level will be calculated by the following

formula:
∆W ^ L (n) = λG ^ L (n) (5)

At the same time, the direction of descent for each level will be calculated
by expression (6):

G ^ L (n) = - [G ^ L (n)] ^ (- 1) S ^ L (n) (6)
Discussion and Results
Computing systems inspired by biological neural networks to perform

various tasks involving large amounts of information are called artificial neural
networks, or ANNs. Artificial neural networks are powerful models for solving
problems. To get the best results from variable inputs, different algorithms are

VII Міжнародна науково-практична конференція

«Мехатронні системи: інновації та інжиніринг»

Інформаційні та компʼютерно-інтегровані

технології

256

used to understand the connections in a given data set. The network is trained to
achieve the desired results and different models are used to predict future
outcomes with the data.

Thus, we can say that this method is probably the most suitable method
for dealing with large networks because it saves computational time, and is also
faster than the gradient descent or conjugate gradient method.

Conclusion
The article presents two modifications to the classical approach of the

Quasi-Newton method. It has been shown that the hypotheses supporting these
methods are relevant and desirable in terms of convergence properties. The
BFGS-N method, a proposed update as a function of neurons, is a very good
alternative to the standard regression propagation algorithm. Represents a clear
gain in terms of computational time without significantly increasing the required
memory area and makes the approach suitable for large-scale problems. Also,
there is no need to adjust the parameters, as in the redistribution algorithm,
which makes the algorithm very easy to use.

References
1. Rumelhart, D.E., Hinton, G.E., Williams, R.J. 'Learning Internal

Representation by Error Propagation' chapitre 8, Parallel Distributed Processing:
Explorations in the Micro structure of Cognition, Rumelhart, D.E. and
McClelland, J.L. editor, MIT Press, Cambridge, MA, 1986

2. Fahlman, S.E. 'An Empirical Study of Learning Speed in Back-
Propagation Networks' internal report: CMU-CS-88-162, Carnegie Mellon
University, Pittsburgh, Juin 1988

3. Jacob, R. A. 'Increased rates of convergences through learning rate
adaptation' Neural Networks, Vol. 1, 29 p., 1988

4. Tallaneare, T. 'SuperSAB: Fast Adaptive backpropagation with good
scaling properties' Neural Network, Vol. 3, pp. 561-573, 1990

5. Rigler, A.K., Irvine, J.M., Vogl, K. 'Rescalins of variables in
backpropagation learning' Neural Networks, Vol. 4, pp. 225-229, 1991

6. Leonard, J. A., Kramer. M. A. 'Improvement of the BackPropagation
algorithm for training neural networks' Computer chem. Engng., Vol. 14, No.3,
pp. 337-341, 1990

7. Van Ooyen, A., Nienhuis, B. 'Improving the Convergence of the Back-
Propagation Algorithm' Neural Networks, Vol. 5, pp.465-471, 1992

8. Dennis, I.E., Schnabel, R.B. Numerical Methods for Unconstrained
Optimisation and Nonlinear Equations Prentice-Hall, 1983

9. Waltrous, R.L. 'Learning Algorithms for Connectionist Networks:
Applied Gradient Methods of Nonlinear Optimization' pp \\-6\9-621JEEEFirslnt.
Conf. Neural Networks, San Diego, 1987

10. Barnard, E. 'Optimization for Training Neural Nets' IEEE Transaction
on Neural Networks, Vol. 3, No. 2, pp. 232-240, 1992

11. Bello, M.G. 'Enhanced Training Algorithms, and Integrated
Training/Architecture Selection for Multilayer Perceptron Networks' IEEE
Transaction on Neural Networks, Vol. 3, No. 6, pp. 864-875, 1992.

